Full metadata record
DC FieldValueLanguage
dc.contributor.author吳明聰en_US
dc.contributor.authorWu, Ming-Tsungen_US
dc.contributor.author劉柏村en_US
dc.contributor.authorLiu, Po-Tsunen_US
dc.date.accessioned2014-12-12T01:49:50Z-
dc.date.available2014-12-12T01:49:50Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079824554en_US
dc.identifier.urihttp://hdl.handle.net/11536/47578-
dc.description.abstract鍺半導體由於擁有較高的電洞和電子遷移率,被視為是下一世代奈米電子元件技術中最有希望取代矽而成為電晶體主動層的半導體材料,但是次氧化鍺(GeOx)的熱穩定性較差,使得元件製作過程中的高溫製程將會劣化Ge-MOSFET 的元件特性。因此,為了消除次氧化鍺熱解造成的元件劣化情形,我們提出了高壓水處理的技術(低溫的超臨界流體),以消除次氧化鍺熱層穩定為主要目的。所以我們研究了鍺型金氧半元件在超臨界二氧化碳流體混合水的處理下其電性的改變以及其機制探討。首先,我們對在鍺基板上剛濺鍍完的二氧化鋯使用250oC真空爐管退火並且做為基準片,而後再分別對其進行300oC、400oC、500oC通氮氣快速退火30秒,來研究其因熱所造成的元件劣化情形,接著再挑選500oC退火的試片對其進行溫度為100°C壓力為3000psi的二氧化碳超臨界流體混合水處理持續一小時;後續我們使用了高解析穿透式電子顯微鏡以及X光光電子能譜儀,驗證超臨界流體混合水能有效的使水分子擴散至二氧化鋯到達鍺通道和二氧化鋯的界面,進而再介面中產生氧化還原反應,其中包含氧化為完全鍵結的鋯元素以及還原次氧化鍺回鍺元素,使次氧化鍺層能夠消除,且整體的閘極氧化層厚度下降,也修補了因次氧化鍺熱解造成的元件劣化情形,降低閘極漏電流;對經過退火後的元件作超臨界處理,發現元件特性得到改善,顯示出超臨界二氧化碳流體混合水的確具有通過閘極氧化層進而擴散到鍺通道表面去做還原氧化的能力。除此之外,我們利用常壓的水氣快速退火來驗證是否水的處理能夠產生次氧化鍺的還原反應,由結果顯示,不論是高壓還是常壓的水處理都具有在二氧化鋯以及鍺通到界面產生氧化還原的能力,使得次氧化鍺能夠消除,不過高壓水處理的方式對於消除次氧化鍺的能力確實比常壓水處理的方式來得較具效果;通過適當的退火溫度也可以對界面產生修補的作用,所以低溫超臨界流體混合水的技術,能減少次氧化鍺層的厚度,並且改善鍺型元件的特性。可預期的,若將超臨界流體的特殊特性整合在鍺型電晶體元件的製作上,去修補因為後續高溫製程對元件產生的裂化情形,對於未來高效能鍺型MOSEFT發展,將具有其優勢以及前瞻性。zh_TW
dc.description.abstractGermanium (Ge) semiconductor has been considered as an alternative channel material in replace of Si for future high-performance CMOS technology, because its higher carrier mobility for both electrons (2.6 times) and holes (4.2 times). However, the Ge-MOS technology has the most critical issue hindering the application of Ge is lack of high-quality and stable Ge sub-oxide (GeOx). In this study, to solve the thermal decomposition of GeOx the high pressure water treatment (supercritical fluids technology) is employed originally to eliminate the GeOx interlayer and improve the properties of ZrO2 high-k film. First, the thermal stability of ZrO2/Ge stack is analyzed by the sample treated with 250oC high vacuum furnace annealing for 30min and then treated by 300oC, 400oC and 500oC N2 RTA for 30s respectively. Second, the high pressure water treatment (SCF) at 100oC and 3000psi for 1hr used to the sample which is treated by 500oC N2 RTA for 30s. By HR-TEM, XPS analyses, it can verify the elimination of GeOx interlayer due to the SCF treatment surely, and it can explain the improvement of the gate leakage after SCF treatment. According to the many reference paper, we indicate the mechanism about the reduction of GeOx interlayer in ZrO2/Ge by SCF treatment. Besides, the Water Vapor Annealing is used to verify the water treatment has the ability of redox in the ZrO2/Ge stack, and though the annealing by suitable temperature can repair the interface to improve the electric characteristic of ZrO2/Ge device. The SCF treatment on high performance Ge-MOSFET shows promise as critical technology in resolving GeOx decomposition.en_US
dc.language.isoen_USen_US
dc.subject高壓水zh_TW
dc.subjectzh_TW
dc.subject金氧半元件zh_TW
dc.subjectHigh Pressure Water Treatmenten_US
dc.subjectGermanium-based MOSen_US
dc.title高壓水處理技術應用於鍺型金氧半元件之研究zh_TW
dc.titleStudy of High Pressure Water Treatment for Germanium-based MOS Deviceen_US
dc.typeThesisen_US
dc.contributor.department光電工程學系zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 455401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.