Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Ming-Chihen_US
dc.contributor.authorWu, Chin-Tienen_US
dc.contributor.authorTseng, Yu-Houen_US
dc.date.accessioned2014-12-08T15:06:12Z-
dc.date.available2014-12-08T15:06:12Z-
dc.date.issued2007-05-01en_US
dc.identifier.issn0168-9274en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.apnum.2006.07.019en_US
dc.identifier.urihttp://hdl.handle.net/11536/4763-
dc.description.abstractIn this paper, we present an efficient multigrid (MG) algorithm for solving the three-dimensional variable coefficient diffusion equation in cylindrical coordinates. The multigrid V-cycle combines a semi-coarsening in azimuthal direction with the red-black Gauss-Seidel plane (radial-axial plane) relaxation. On each plane relaxation, we further semi-coarsen the axial direction with red-black line relaxation in the radial direction. We also prove the convergence of two-level MG with plane Jacobi relaxation. Numerical results show that the present multigrid method indeed is scalable with the mesh size. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectmultigrid methoden_US
dc.subjectV-cycleen_US
dc.subjectvariable diffusion equationen_US
dc.subjectcylindrical coordinatesen_US
dc.titleAn efficient semi-coarsening multigrid method for variable diffusion problems in cylindrical coordinatesen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/j.apnum.2006.07.019en_US
dc.identifier.journalAPPLIED NUMERICAL MATHEMATICSen_US
dc.citation.volume57en_US
dc.citation.issue5-7en_US
dc.citation.spage801en_US
dc.citation.epage810en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000246595900027-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000246595900027.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.