标题: | 运用粒子群最佳化解决多场站之收送货问题 A Particle Swarm Optimization Approach for the Multi-depot Vehicle Routing Problem with Pickup and Delivery |
作者: | 李忠宪 Li, Chung-Hsien 王晋元 Wang, Jin-Yuan 运输与物流管理学系 |
关键字: | 多场站收送货问题;粒子群最佳化;优先限制;MDPDP;Particle Swarm Optimization;precedence constraints |
公开日期: | 2010 |
摘要: | 本研究主要针对多场站之收送货问题(Multi-depot Vehicle Routing Problem with Pickup and Delivery, MDPDP)定式数学模式与发展一套有效的解法。在数学模式部分,本研究参考过去所发表过MDVRP与PDPTW之数学模式,加入考量收送货的优先限制,建构一个MDPDP之数学模式。优先限制为收送货问题特性之一,对于每个顾客而言,必须先服务该顾客之收货后才能服务该顾客之送货。在演算法部分,本研究以粒子群最佳化(PSO)为基础,设计一般PSO与GLNPSO两种演算法来求解MDPDP,比较两种演算法之求解绩效,并提出两种新的惯性权重更新法则。在编码方式的设计上,参考Wu and Wang[28],产生适合于本研究之编码方式。最后本研究参考Ropke and Pisinger[15]之测试例题,加以修改作为本研究之测试范例。测试结果指出本研究之两种演算法在求解小范例之绩效没有显着差异,求解较大规模之问题时,GLNPSO求解绩效较优。 The goals of this research are to develop a mathematical model and an effective solution technique for the Multi-depot vehicle routing problem with pickup and delivery(MDPDP). Our model is based on the published MDVRP and PDPTW formulations plus the proposed precedence constraints. The precedence constraints mean the pickup tasks must be fulfilled prior to the delivery tasks for each customer. Two particle swarm Optimization based heuristic algorithms, general PSO and GLNPSO, are developed for solving MDPDP. The uniqueness of our solution techniques is the mechanism of encoding and decoding of a solution, which is a modification of that of Wu and Wang [28]. Testing examples are generated from the existing benchmark instances. Numerical experiments show that these two algorithms perform equally well for small problems. However, GLNPSO is more effective for solving larger problems. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079832524 http://hdl.handle.net/11536/47836 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.