標題: | 操控不鏽鋼奈米孔洞調控生物相容性與成骨細胞功能表現 Control of biocompatibility and cellular function for osteoblasts by tunable stainless steel nanostructure |
作者: | 謝孟哲 黃國華 材料科學與工程學系奈米科技碩博士班 |
關鍵字: | 成骨細胞;不鏽鋼;奈米孔洞;osteoblast;stainless;nanopore |
公開日期: | 2011 |
摘要: | 運用陽極氧化過程製造的奈米孔洞在生物醫學應用上已經受到相當大的關注。之前的研究已經證明相較於沒有陽極氧化製做結構的部分,奈米孔洞可以促進成骨細胞的貼附以及功能性的發展。最近一項研究發現奈米孔洞的直徑可以決定細胞得發展。不鏽鋼的材質對於骨頭生長擁有很多的好處相較於其他材料,因此有越來越多的需求探討成骨細胞在不鏽鋼材質的奈米孔洞表面上的生長。基於這個原因,我們對成骨細胞在不同尺寸的不鏽鋼奈米孔洞上的行為進行探討。細胞的形態,生存能力,貼附和礦化現象將被探討。
結果顯示直徑40奈米和100奈米對於細胞的形態,生存能力,貼附,鹼性磷酸酶活性和礦化現象有很好的影響。在細胞型態和生存能力上40奈米和100奈米有很好的表現,在40奈米上細胞的貼附和骨架發展得最好。而礦化發生的效率在40奈米到100奈米之間隨者孔洞半徑得上升而上升。這些現象可能是因為奈米孔洞在奈米尺寸下不同的粗糙度引發的。我們的研究顯示奈米型態的表面對於成骨細胞功能性的協同作用並可應用於設計更好的生醫植入物表面。 Nanopore layers by anodization have received considerable attention in biomedical application. Previous studies have demonstrated increased osteoblast (bone-forming cell) adhesion and function on nanopore layers compared with unanodized counterparts. More recently, one study showed nanopore diameter determined cell fate. The stainless steel material is known to be much more beneficial for bone growth than others material, so there is increasing demand to explore the response of osteoblast on stainless steel with nanopore layer. For this reason, we evaluated MG63 osteoblast behavior on different diameter nanopore layers with stainless steel. Cell morphology, viability, adhesion and mineralization were evaluated. The results showed that the diameter of 40nm and 100nm provided an effective length scale for cell morphology, viability, focal adhesion, alkaline phosphatase activity, and mineralization. The cell morphology and viability showed good expression on 40nm and 100nm, best adhesion and actin filament occurred at 40nm. The mineralization rates of cells cultured on stainless steel nanopore layers increased with increasing pore diameter from 40 to 100 nm, which may be attributed to different length and nanometer-scale roughness of the nanotube layers. Our study reveals a synergistic role played by the nanotopographies in osteoblast functions and provides insight to the design of better biomedical implant surfaces. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079852520 http://hdl.handle.net/11536/48232 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.