完整後設資料紀錄
DC 欄位語言
dc.contributor.author張書華en_US
dc.contributor.authorChang, Su-Huaen_US
dc.contributor.author李素瑛en_US
dc.contributor.authorLee, Suh-Yingen_US
dc.date.accessioned2014-12-12T01:52:19Z-
dc.date.available2014-12-12T01:52:19Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079855598en_US
dc.identifier.urihttp://hdl.handle.net/11536/48333-
dc.description.abstract近幾年來,因為很多大型社群網站的興起,在社群網路中影響力最大化問題已經引起了很多關注。 影響力最大化問題是在社群網路中找尋一群節點,使得影響力的散播最大化。雖然近幾年已有很多研究在解決影響力最大化的問題,但是用以模擬社群網路的模型不能真實反映現實、網路情境,且效率不佳。然而因為大規模社群網路不斷的增加,效率和實際可行性已經是重要的課題。在此篇論文中,我們使用熱流模模擬切實際的網路,並在此模型下提出兩種解決影響力最大化的演算法。我們利用社群結構來避免影響力重疊,再從所找出來的社群結構中找出最具有影響力的關鍵性節點。藉由社群結構的特性可以大量的減少需要考慮的節點數目。我們使用合成和真實的資料實驗的結果顯示我們所提出的演算法在效能上有很大的改善。zh_TW
dc.description.abstractIn recent years, considerable concern has arisen over the influence maximization in social network, due to the surge of social network web sites. Influence maximization is the problem of finding a small subset of nodes in a social network that could maximize the spread of influence. Although many recent studies are focused on influence maximization, these works in general are not realistic nor efficient. Nevertheless, with the increasing number of large-scale social networks, efficiency and practicability requirement for influence maximization have become more critical. In this thesis, we propose two novel algorithms, CDH-Kcut and CDH-Shrink, to solve the influence maximization problem in the realistic model, i.e., heat diffusion model. Our algorithms use the community structure, which could significantly decrease the number of candidates of influential nodes, to avoid information overlapping and to find the influential nodes according to the community structure. The experimental results on synthetic and real datasets show our algorithm significantly outperforms in efficiency.en_US
dc.language.isoen_USen_US
dc.subject社群網路zh_TW
dc.subject影響力最大化問題zh_TW
dc.subject社群zh_TW
dc.subjectsocial networken_US
dc.subjectinfluence maximization problemen_US
dc.subjectcommunityen_US
dc.title利用社群特性於於社區網路影響力最大化之研究zh_TW
dc.titleEfficient Influence Maximization in Social Network Via Community Characteristicsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 559801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。