完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 方士偉 | en_US |
dc.contributor.author | Fang, Shih-Wei | en_US |
dc.contributor.author | 黃世強 | en_US |
dc.contributor.author | Wong, Sai-Keung | en_US |
dc.date.accessioned | 2014-12-12T01:52:27Z | - |
dc.date.available | 2014-12-12T01:52:27Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079855627 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/48365 | - |
dc.description.abstract | 在本篇論文裡,我們提出了一個新的團隊能力平衡系統 (TABS),以協助遊戲設計師評量一個角色扮演團隊戰鬥類型的遊戲內,任兩個團隊的能力設定是否平衡。TABS 利用基因演算法或粒子群優化,來訓練人工神經網路控制器。訓練成果最傑出的控制器會被選擇並應用於團隊平衡度的評估。另外,我們也提出了教練訓練法這種訓練模式,它能公平地訓練控制器。為了加速訓練的程序,我們運用了多執行緒技術,讓控制器能在數個獨立的遊戲空間裡平行進行訓練。在個案研究中,我們把TABS 應用到我們自行設計的MagePowerCraft 遊戲來進行驗證與實驗。而實驗結果顯示我們的系統效能頗令人滿意。 | zh_TW |
dc.description.abstract | In this thesis, we propose a novel Team Ability Balancing System (TABS) to assist game designers to evaluate whether the team ability settings of any two teams are balanced in a role-playing combating game. TABS uses artificial neural network controllers which are trained by either genetic algorithm or particle swarm optimization. The best-trained controllers are chosen and applied for the team balance evaluation. Additionally, we also propose the Train-by-Coaches scheme which is useful for training controllers in a fair manner. In order to speed up the training process, we apply the multi-threading techniques to train the controllers in several independent game spaces in parallel. In a case study, we apply TABS to the in-house designed game, MagePowerCraft, for validations and experiments. Experimental results show that the performance of our system is quite satisfactory. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 計算智能 | zh_TW |
dc.subject | 人工智能 | zh_TW |
dc.subject | 基因演算法 | zh_TW |
dc.subject | 粒子最優化 | zh_TW |
dc.subject | 遊戲 | zh_TW |
dc.subject | 遊戲平衡 | zh_TW |
dc.subject | computational intelligence | en_US |
dc.subject | artificial intelligence | en_US |
dc.subject | genetic algorithm | en_US |
dc.subject | particle swarm optimization | en_US |
dc.subject | game | en_US |
dc.subject | game balance | en_US |
dc.title | 利用計算智能處理遊戲團隊平衡 | zh_TW |
dc.title | Game Team Balancing by Using Computational Intelligence | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |