标题: | 信誉基准的权重投票以减少入侵侦测的误判漏判 Creditability-based Weighted Voting to Reduce False Positives and Negatives in Intrusion Detection |
作者: | 戴维炫 Tai, Wei-Hsuan 林盈达 Lin, Ying-Dar 网路工程研究所 |
关键字: | 入侵侦测;误判;漏判;警报后处理;intrusion detection;false positives;false negatives;alert post-processing |
公开日期: | 2010 |
摘要: | 误判和漏判发生于每台入侵侦测系统,而误判和漏判发生的频率和多寡被用来评估入侵侦测系统的能力。单一台入侵侦测系统的侦测能力常不理想是因为伴随大量的误判,再加上单单只有一台的侦测结果是无法调查其漏判的状况。据此显示单靠一台来侦测是有所不足和其限制,因此为了克服单一台的限制,藉由整合多台不同知识能力的入侵侦测系统为一方法,然而,在侦测同一份网路流量时,不同的侦测能力可能会产生不同的侦测结果,所以如何利用这些侦测结果来对该被侦测的网路流量做出一个好的决策是具挑战性的难题。因此本研究提出一个信誉基准的权重投票方法,用以整合考量各家入侵侦测系统的知识能力并尝试同时降低误判和漏判的机会,且藉此提升多台所产生之警报处理的有效性。提出的方法主要程序为:调查各家入侵侦测系统的侦测能力并对他们建立相对应的信誉值,然后根据各信誉值分配权重给相对应的投票者,再实际对该被处理的网路流量执行决策以决定是否为恶意的。在结果中,不同的信誉数值证明不同台入侵侦测系统的侦测能力是不同的,即证明其知识能力不相同的特性。再者,在投票方法中,我们使用Accuracy及Efficiency用以评估投票演算法,本文所提出的投票方法准确性和有效性达到95%和94%,优于多数决的66%和41%。此外,本文提出的投票方法相较于各台入侵侦测系统,在平均误判及漏判减少的百分比数值为21%和58%。 False Positive (FP) and False Negative (FN) happen to every Intrusion Detection System (IDS). How frequently they occur is used to evaluate the performance of an IDS. A large number of FPs will degrade the performance of the IDS. Furthermore, FNs cannot be investigated from one IDS’s alerts. Thus, to overcome the limitation of one IDS, a way to leverage multiple IDSs’ domain knowledge is used. However, due to different detection capabilities, different IDSs may have different detection results for a traffic trace. Hence, using these results to make a good decision regarding the trace’s status turns out to be challenging. This work proposes a Creditability-based Weighted Voting (CWV) to reduce both FPs/FNs and increase the performance of multiple IDSs. The CWV first investigates the detection capabilities of all IDSs and models the corresponding creditabilities to them. Then, according to the creditabilities, it assigns the weights to IDSs and makes a decision concerning the trace. From the experiment results, we demonstrate the different IDSs’ detection capabilities by their creditabilities. In addition, we use Accuracy and Efficiency to evaluate the CWV and the majority voting (MV). The CWV achieves the accuracy of 95% and the efficiency of 94% compared to 66% and 41% of the MV. Besides, with the CWV, the average percentages of FP/FN reduction for an IDS are 21% and 58%, respectively. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079856514 http://hdl.handle.net/11536/48392 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.