标题: | 运用资料探勘技术于半导体制程异常机台分析 Applying Data Mining Techniques to Analyze Abnormal Equipments in Semiconductor Manufacturing Process |
作者: | 张采蘩 Chang, Tsai-Fan 刘敦仁 Liu, Duen-Ren 管理学院资讯管理学程 |
关键字: | 资料探勘;阶层式分群;晶圆图;良率;机台;Jaccard;Data mining;Hierarchical clustering;Wafer bin map;Yield;Equipment;Jaccard |
公开日期: | 2010 |
摘要: | 半导体制造程序包含数百个执行步骤,如何有效地判定异常机台其实是一个复杂的问题。本研究于每晶圆批完成探针测试之后即对其产生的晶圆图进行分析,主要采用凝聚式阶层分群演算法,并整合失效晶粒之空间分布特性、良率以及时间维度参数,藉此判断发生异常的机台与反应室。在阶层式分群演算法中,本研究评估以最小距离、最大距离、均值距离与平均距离之分群结果,归纳平均距离的分群表现最佳;另实验结果同时证明本研究提出之系统化方法,不仅能够有效率地分析晶圆与反应室层级的资料,同时也兼具客观性和准确性。最后经由分群方法之比较,也证实阶层式分群方法的效果优于K-means与EM。 There are hundreds of processes in semiconductor manufacturing. It is a difficult task to find abnormal equipments. This research constructs a model to analyze wafer bin maps after circuit probe testing. We have developed a hybrid approach that integrates hierarchical clustering, spatial characteristic, yield, and time dimension for abnormal equipments and chambers detection. We apply four hierarchical clustering algorithms, include single-linkage, complete-linkage, mean and average method, and observe that average clustering algorithm works the best with wafers from a semiconductor manufacturing company. The experimental results show that the proposed model can identify the faulty wafers and at chamber level efficiently and effectively. The results also indicated hierarchical clustering algorithm would perform better than K-means and EM algorithm. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079864511 http://hdl.handle.net/11536/48620 |
显示于类别: | Thesis |