標題: | 造成巨大磁場的奈米磁鐵FePt的磁化作用於二氧化鉿介電質MIM結構中之特性 Giant Magnetic Field in the Magnetization of Nano-Magnets FePt in MIM Structure Using HfO2 Dielectrics |
作者: | 張程豪 Chang, Cheng-Hao 張俊彥 Chang, Chun-Yen 電子研究所 |
關鍵字: | 磁場;鐵白金;磁化;二氧化鉿;金屬-絕緣體-金屬;Magnetic field;FePt;Magnetization;HfO2;MIM |
公開日期: | 2012 |
摘要: | 磁性效應的研究和應用在金屬-絕緣體-金屬的結構中已經被證實,從文獻中,磁場效應對電子元件中的載子傳導有許多現象,因此我們的指導教授提議將奈米磁鐵加入在奈米尺度的空間MIM (Metal-Insulator-Metal)結構中,可以產生巨大的磁場(本實驗中最大可達28.6 Tesla)進而研究在強磁場下之電磁、磁光、機械、溫度等效應,更進一步的將這些效應應用於,如:電子元件、醫療電子、能源儲存、太空感測、環境感測等研究。因此,相信這將會對未來的研究領域中,開啟了一扇未知之窗。本論文主要內容分三部分,第一部分為磁性MIM元件結構的製作,其中分別製作了兩種元件結構:Co_薄膜和Co_圖案(詳見第三章)。第二部分為磁退火爐管的設計與製造,我們利用磁退火爐管來控制磁性材料中的磁矩的磁化方向(詳見第四章)。最後一部分為奈米磁鐵FePt磁化作用於MIM結構的磁特性和電特性之結果,其中電特性主要針對漏電流密度和崩潰電場來探討(詳見第五章)。由第五章的結果,我們得知無論在Co_薄膜和Co_圖案的兩種MIM結構中,經由磁退火爐管磁化過後的MIM結構對於元件的電特性皆有明顯的改善:在磁化磁場(B)垂直於電極電場(E)的條件下(B E),其對於漏電流密度的降低有最明顯的改善,而磁化磁場平行電極電場的條件下(B//E),其對於崩潰電場的提升最為明顯。此外,磁化磁場的方向,對於在長軸或是短軸磁化,對各別細胞(cell)的大小、方向也有不同的作用,但詳細的了解須更進一步的再研究,特別是對磁、對電-光元件(如二極體、太陽能電池、電晶體、雷射、發光二極體)的作用。 It has been demonstrated that a few research and application of magnetic effects on metal-insulator-metal (MIM) structures. In various literatures, there are serveral phenomema relative to carrier transport in electronic device under magnetic field effect. Therefore, we have made nano-magnets in nanometer MIM structures to produce a giant magnetic field. A giant magnetic field in the nanometer MIM structures can open up tremendous opportunities in the discovery of new phenomena, and new physics, such as magnetic field induced electrical, optical, mechanical, temperature effects etc. Therefore, many new applications in electronic devices, medical electronics, new type of energy storage, astronomical research sensing, environmental sensing studies etc, become possible which could be most creative in the researches. The contents of the thesis is divided into three parts namely, the first part is the fabraction process and details of magnetic MIM structure; there are two component structure in this part: the Co_ Film and the Co_ Pattern (see Chapter 3). The second part is the design and manufacturing details of magnetic annealing furnace; we control the magnetized directions of magnetic dipoles in magnetic material by using magnetic annealing furnace (see Chapter 3). The last part is the magnetization of nano-magnets FePt in MIM structure the results of the magnetic and electrical characteristics which the electrical characteristics are the leakage current density and breakdown field (see Chapter 5). By the results of the fifth chapter, we obtain that both in the MIM structures of Co_ Film and Co_ Pattern, the electrical characteristics of the devices have significantly improved via the magnetization of nano-magnets FePt after magnetic annealing furnace under the condition (B E) of the magnetization magnetic field (B) perpendicular to the electrode electric field (E) for the decreaseing of the leakage current density which is the most significant improvement. The enhancement of the breakdown field is most intense under the condition (B//E) of the magnetization magnetic field parallel to the electrode along longitudinal (long) or transverse (short) axis directions, which will have a significant effects on the orientations and size of the cell, but the understanding of details required further study, especially the effects of magnetic field on electrical-optical devices, such as diode, transistor, photovoltaic cell, Laser, LED etc. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079911532 http://hdl.handle.net/11536/49079 |
Appears in Collections: | Thesis |