完整後設資料紀錄
DC 欄位語言
dc.contributor.author林建志en_US
dc.contributor.authorLin, Chien-Chihen_US
dc.contributor.author陳宏明en_US
dc.contributor.author江蕙如en_US
dc.contributor.authorChen, Hung-Mingen_US
dc.contributor.authorJiang, Hui-Ruen_US
dc.date.accessioned2014-12-12T01:55:30Z-
dc.date.available2014-12-12T01:55:30Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079911678en_US
dc.identifier.urihttp://hdl.handle.net/11536/49195-
dc.description.abstract此篇論文提出了一個在類比電路的階層合成框架上的性能探勘技術和一個動態非均勻的模擬技巧。不同於規格針對性的設計,這篇研究主要是透過平行化的基因演算法探勘類比電路效能的極限,以達到尋找出比人為所不易找到的類比電路設計結果。不同於其他基於演化的拓撲探勘,這個方法能夠把性能視為基因組合來用在演化上且利用多人口群的特點來解決多目標的問題。在人口群裡所選擇的性能能夠利用重新針對的技巧轉換為器件參數。基於把器件參數正規化,一個概率動態模擬顯著地減少找到電路性能全域最佳解的收斂時間。這個演算法發展於分散式的OpenMp。實驗結果顯示出我們提出的類比電路合成方法在不同製程上的RFDA 和Op-Amp 電路能夠得到更好的運行時間且有更高的品質。zh_TW
dc.description.abstractThis thesis presents a performance exploration technique and a stochastic non-uniform simulation in hierarchical synthesis framework for analog circuit. Dierentfrom spec targeted designs, this proposed approach can help to search the solutions better than designers' expectation. A parallel genetic algorithm method is employed for performance exploration. Unlike other evolution-based topology explorations, this is a method that regards performance constraints as input genome for evolution and resolves the multiple-objective problem with the multiple-population feature. Populations of selected performance are transfered to device variables by re-targeting technique. Based on a normalization of device variable distribution, a probabilistic stochastic simulation signi?cantly reduces the convergence time to find the global optima of circuit performance. This algorithm is developed and run on distributed OpenMP. Experimental results show that our approach on radio-frequency distributed ampli?er (RFDA) and folded cascode operational amplier (Op-Amp) in di?erent technologies can obtain better runtime and higher quality in analog synthesis.en_US
dc.language.isozh_TWen_US
dc.subject類比電路zh_TW
dc.subject平行化zh_TW
dc.subject基因演算法zh_TW
dc.subject階層合成zh_TW
dc.subject動態模擬zh_TW
dc.subject多目標的問題zh_TW
dc.subject非均勻zh_TW
dc.subjectAnalog Circuiten_US
dc.subjectParallelen_US
dc.subjectGenetic Algorithmen_US
dc.subjectHierarchical Synthesisen_US
dc.subjectStochastic Simulationen_US
dc.subjectMulti-objective Problemen_US
dc.subjectNon-uniformen_US
dc.title使用敏捷式基因探勘與隨機最佳化來改善類比電路合成的效率zh_TW
dc.titleOn Improving Analog Synthesis Efficiency via Agile Genetic Exploration and Stochastic Optimizationen_US
dc.typeThesisen_US
dc.contributor.department電子研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 167801.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。