标题: 轮椅机器人视觉定位与伴随者辨识
Vision-Based Localization and Accompanist Recognition for Wheelchair Robots
作者: 李玟芳
Li, Wun-Fang
吴炳飞
Wu, Bing - Fei
电控工程研究所
关键字: 同步定位与建立地图;扩展卡曼滤波器;加速稳健性特征;VSLAM;EKF;SURF
公开日期: 2011
摘要: 在移动式服务机器人中,机器人与人之间的互动是很重要的一个议题,要达到机器人与人互动的功能,机器人必须要能够侦测与辨识出环境中是否有所要互动之对象。在本论文中,我们提出结合多重感测器的资讯去估测出目前伴随者的所在位置,首先视觉同时定位与建立地图(visual simultaneous localization and map building, VSLAM)是利用Microsoft Kinect所提供的彩色与深度影像资讯做为依据并搭配加速稳健性特征(Speeded Up Robust Feature, SURF)演算法与扩展卡曼滤波器(extended Kalman filter, EKF)去估测出机器人的位置。而基于Kinect所提供的彩色与深度影像资讯,利用SURF演算法辨识出伴随者,并藉由VSLAM所得的机器人位置推估出伴随者的所在位置。本论文以实验结果成功显示出我们的系统可以即时侦测出所要跟随的伴随者,也可精准定位出机器人与伴随者的位置。
Human-robot interaction is an important issue for the mobile service robots. To provide such a task and service, the mobile robot need to detect and recognize people in the surroundings. In this paper, we propose to utilize the multisensory data fusion to estimate the human position. First, the visual simultaneous localization and map building (VSLAM) is achieved by using the Microsoft Kinect and inertial sensors with the speeded up robust features (SURF) algorithm and the extended Kalman filter (EKF) to estimate the robot location recursively. Accordantly, based on the observed color image with depth measured from the Kinect sensor, a SURF algorithm is used for identity recognition and the accompanist’s position is evaluated with the robot position which is provided by VSLAM. The experimental results demonstrated the performance of the system, which could be able to recognize immediately and estimate accurately the localization with accompanist.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079912544
http://hdl.handle.net/11536/49245
显示于类别:Thesis