标题: 新型态数值模拟之研发-可适性计算
The Development of Novel Numerical Simulation Platform - Adaptive Computation Framework
作者: 陈宇文
Chen, Yu-Wen
张良正
Chang, Liang-Cheng
土木工程学系
关键字: 可适性计算架构;方程式一致性分析;地下水流;热流传输;溶质传输;Adaptive Computational Framework;Equation consistence analysis;groundwater flow;heat transport;solute transport
公开日期: 2009
摘要: 随着资讯科技的快速发展,数值模拟模式之计算能力大幅提升,因此已被广泛应用在各工程领域中,且其重要性日趋显着。数值模式之开发一般包含四大步骤,分别为“概念模式描述”、“数学模式定义”、“数值离散推导”与“电脑程式开发”四个阶段,任一数值模式之开发均需经历上述四个阶段,因此使得更新或扩充一个既存数值模式之问题范畴,则需重头至尾历经上述四个步骤,使得修改工作变得极为复杂且耗时,限制了既存数值模式模拟范畴扩充与更新的弹性。有鉴于此,本研究提出全新的数值建模方法 − “可适性计算架构”,突破传统的数值建模方式的限制,使得应用“可适性计算架构”开发的数值模式,具有容易扩充与更新模拟功能之特点。

“可适性计算架构”并非只是一般的数值方法 (如有限元素法或有限差分法等) ,而是一种数值建模方法。与传统建模方法作比较,可适性计算架构从“数学模式定义”开始着手,直接从分散之多条基础的数学方程式(组)直接进行离散,而不需额外以数学推导与假设进行整合。此外,为了可以处理多条基础方程式之计算,且检验基础方程组之定义完备性,本研究提出“一致性分析”检验多条方程式之相依关系,并决定彼此间之求解顺序。在“数值离散推导”方面,本研究采简单差分法处理微分运算子,且相较于传统计算方式,本研究毋须建立矩阵方程式,以各节点直接运算。此外,本研究以“Voronoi Diagram”作为空间切割法,网格形状极具弹性,可适应不同的空间型态。在“电脑程式开发”阶段,相较于传统之矩阵解法,本研究提出“内、外迭代”流程负责求得符合边界条件与初始条件之解,惟仍维持各格点计算上的独立性。本计算架构相较于与传统方式,虽然整体开发方式不同,惟若在“数学模式定义”阶段之初,选取相同之数学方程组,则本计算架构与传统方法所解的为相同之问题,且本计算架构毋须额外之数学推导与假设,除了可以节省开发模式之心力外,在概念上更贴近原始定义之问题。

在案例验证上,本研究以可适性计算架构建立“地下水流”、“热流传输”与“溶质传输”三个子问题之模拟,并建立五个模拟案例进行验证,证实本计算架构之正确性与弹性。藉由案例实作上证实,应用“可适性计算架构”建立之模式,如欲扩张模式模拟能力,新增其他运动机制,仅需撰写替换或增加之方程式,证实“可适性计算架构”的扩充能力。因此,应用“可适性计算架构”开发数值模式可以大幅减轻模式开发的负担,使得工程师或研究人员可以更加专注于问题本质上,而非工具或模式开发上。
This study proposed a innovative methodology for developing numerical simulation models that overwhelm conventional developing process and greatly increase the efficiency of model development. The advancement of information technology (IT) have significantly improved the computational capa- bility of numerical model, thus increased the importance of numerical simulation in various engineering analysis. The conventional process of numerical model development consists four steps that includes “conceptual model description”, “mathematical model definition”, “numerical model derivation” and “computer program development”. Once a numerical model has developed, one still has to repeat the four steps to modify the code even if only part of the original problem was modified with the conven- tional model developing process. The modification process is always complicated and time consuming. Hence, the traditional development process is lack of flexibility and difficult to update the computing functionalities of an existed numerical model. Therefore, to resolve these model developing issues, the Adaptive Computation Framework (ACF), a novel methodology to develop numerical simulation method, is proposed in this study. By using the proposed ACF method, a new computing function is easy to add into a existing model, i.e. a numerical model can grow with new computing functions.

The ACF is much more than just a new numerical scheme such as the finite element (FEM) or finite difference method (FDM). At the “mathematical model definition” step, the ACF define a problem by the set of originally fundamental equations without further artificial combination and simplification to get a more compact set of PDEs. An ”equation consistence analysis” is proposed in this step to ensure the consistence of these fundamental equations and variables, and also determine the sequence to solve the equations. In the “numerical model derivation” step, instead of applying complicated numerical scheme such as FEM or FDM, only simple difference method is needed to discretize the equations and the “Voronoi Diagram” is proposed as the griding method for spatial discretization. In the “computation program development” step, instead of solving a matrix equation, a general iteration method consists of inner and outer iteration is proposed to compute the solutions at each grids.

To demo the effectivity of the proposed methodology, three different groundwater numerical mod- els, “groundwater flow only”, “groundwater flow with heat transport” and “groundwater flow with head and solute transport”, are developed by using ACF. Five different cases are examined to ver- ify the correctness and the flexibility of ACF. The cases studies demonstrated that, using the ACF method, a model computing functions can be extended by only adding the required equations and thus increase the model computing capability with minimum coding effort. By using the ACF, engineers or scientists can get relief from the time consuming model redeveloping process, thus can focus more on the problem analysis instead of tool (model) development.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009116814
http://hdl.handle.net/11536/49324
显示于类别:Thesis


文件中的档案:

  1. 681401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.