完整後設資料紀錄
DC 欄位語言
dc.contributor.author許議文en_US
dc.contributor.authorHsu, I-Wenen_US
dc.contributor.author吳樸偉en_US
dc.contributor.authorWu, Pu-Weien_US
dc.date.accessioned2015-11-26T01:06:22Z-
dc.date.available2015-11-26T01:06:22Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079918524en_US
dc.identifier.urihttp://hdl.handle.net/11536/49622-
dc.description.abstract本研究旨在運用一便捷的方式對表面張力致浮力進行其效應之研究與探討。經由電泳沉積、電化學沉積及疏水處理,一超疏水的氧化鋅反結構被成功製備。其表面具有超疏水的性質,靜態接觸角達到 155±3°。理論的最大乘載重量被成功的預測,實驗浮力量測結果對於理論計算亦顯示出良好的一致性,且奈米結構的超疏水表面對其效果有明顯助益。此研究成果對於未來浮力相關研究深具啟發意義,並將有助於水上行走相關問題之解決。zh_TW
dc.description.abstractThis thesis is concerned with the investigation of surface tension enhanced buoyancy effect using a superhydrophobic ZnO inverse opalline structure. The sample is prepared via electrophoresis of polystyrene microspheres into a colloidal crystal, followed by electrodeposition of ZnO into the interstitial voids, removal of PS microspheres, and hydrophobic treatment to render a superhydrophobic surface whose static contact angle is measured at 155±3°. The maximum buoyant force is predicted theoretically using a mathematic model combining both surface tension effect and Archimedes principle. Results from buoyancy testing indicate nice agreements with theoretical predictions in which notable buoyancy improvement is observed in samples with nanostructured surfaces. Our results are of profound implications for future studies of buoyancy and may one day help resolve the problem of water-walking ability.en_US
dc.language.isoen_USen_US
dc.subject超疏水zh_TW
dc.subject浮力zh_TW
dc.subject反結構zh_TW
dc.subject表面張力zh_TW
dc.subjectsuperhydrophobicen_US
dc.subjectbuoyancyen_US
dc.subjectinverse opalen_US
dc.subjectsurface tensionen_US
dc.title超疏水反蛋白石結構應用於表面張力致浮力之研究zh_TW
dc.titleFabrication of Superhydrophobic Inverse Opals for Surface Tension-Enhanced Buoyancyen_US
dc.typeThesisen_US
dc.contributor.department材料科學與工程學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 852401.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。