標題: 駢苯□吩衍生物電晶體與垂直孔洞結構氣體感測器之研究
DiF-TESADT-based Transistor and the Vertical Porous Gas Sensor
作者: 林洪正
Lin, Hung-Cheng
冉曉雯
Zan, Hsiao-Wen
光電工程學系
關鍵字: 電晶體;駢苯□吩衍生物;氣體感測;垂直孔洞結構;Transistor;DiF-TESADT;Gas sensor;Vertical porous structure
公開日期: 2010
摘要: 由於有機電晶體具有可大面積製造、製成簡單、可應用溶液製程與成本較低等許多的優點,使其具有相當潛力應用在電子產品上,像是可撓式顯示器驅動、射頻辨識、互補式電路和生醫感測器等等皆在在近年來被廣泛地開發。在本研究中的第一部分中,將diF-TESADT做為主動層材料,探討其在水平通道結構OTFTs與垂直通道結構電晶體SCLT上的特性。在文獻中,diF-TESADT應用於水平通道結構的OTFT時,經過適當的自組裝分子層(SAM)的處理厚,其載子遷移率可達1~2 mA/cm2且為應用溶液製程,然而其通道長度為20μm,必須使用黃光微影製程來製作。在本研究中,首先討論在通道長度為不需使用黃光微影製程的80μm下,使用不同成膜方式與不同的自組裝分子層來達到較高的載子遷移率。接著,我們有興趣的研究方向為垂直結構的SCLT,在二極體結構上,由於成膜性的問題,我們將diF-TESADT與P3HT混合做為主動層材料並討論其在不同比例、不同溶劑與不同成膜方式下的電流大小與垂直載子遷移率。與單純使用P3HT做為主動層材料做比較,當diF-TESADT與P3HT以1:1的比例混合於DCB溶劑並使用慢乾製程時的電流密度大小及垂直載子遷移率都要來得較為突出。diF-TESADT混合P3HT也初步的應用於SCLT上並探討其特性。 在本研究的第二部分中,我們提出了一種新穎的垂直孔洞氣體感測器。在此結構上,只要更換不同的主動層材料,就能對不同的氣體進行感測。我們使用了P3HT與IGZO這兩種主動層材料,分別對NH3與NO氣體分子進行感測。在P3HT的孔洞感測器中,我們討論了不同的載子注入方向與主動層厚度對於NH3的影響,當採用ITO/P3HT/Al的下注入結構而主動層厚度為60nm時,元件擁有最佳的感測反應,而此反應大小也足夠讓我們應用在生醫感測上。此外,我們也嘗試了一種可讓P3HT與NH3接觸面積增加的結構來探討其特性。而在IGZO的NO感測中,我們探討了工作溫度對於元件對NO氣體回覆性的影響。新穎的垂直孔洞氣體感測器擁有很好的偵測極限與反應大小,具有相當的潛力應用在檢測上,尤其是即時、非侵入性且具有低成本的生醫感測上。
In recent years, flexible electronics Organic semiconductors have attracted a lot of attention due to the characteristics of low cost, light weight, high field-effect mobility, low threshold voltage, and low-temperature solution-processed. In this work, the study of diF-TESADT is discussed through the horizontal channel type OTFTs and the vertical channel type transistors. We fabricated diF-TESADT-based OTFTs through the deposition of diF-TESADT in low melting point solvent and the treatment of SAM. The devices had better mobility compared to the devices which needed to be fabricated by lithography. Besides, we demonstrated the SCLC diode in which the active layer was diF-TESADT blended with P3HT. The blending system had better crystallization ability, hence current density and mobility is better than pure P3HT diodes. Furthermore, we also apply the blending system to SCLT structure to study the electric characteristics of the devices. In the second part of this research, we demonstrate a novel porous gas sensor. The sensor can detect different gas molecules by exchanging the active layer material. P3HT and IGZO are what use to detect NH3 and NO respectively. In the research of P3HT porous diode, we discuss the effect of different carrier injection directions and thickness of P3HT layer. Bottom metal injection and 60nm P3HT layer will lead to the best response of NH3 sensing. Furthermore, we develop a structure that the surface area of P3HT which NH3 reacted is larger. In the research of IGZO NO sensor, we discuss the temperature which the device works at. Well performance and response is obtained by the novel porous gas sensor, and we look forward to apply the real-time and sensitive sensor in the bio-medical applications.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079924511
http://hdl.handle.net/11536/49790
Appears in Collections:Thesis