Full metadata record
DC FieldValueLanguage
dc.contributor.author張鐿瀞en_US
dc.contributor.authorChang, Yi-Jingen_US
dc.contributor.author王秀瑛en_US
dc.contributor.authorWang, Hsiu-Yingen_US
dc.date.accessioned2014-12-12T01:58:00Z-
dc.date.available2014-12-12T01:58:00Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079926515en_US
dc.identifier.urihttp://hdl.handle.net/11536/49925-
dc.description.abstract在預測未來觀測值的研究方法裡,預測區間是一個非常實用的方法。不論是在工業上的應用或是醫學領域上的應用,預測區間都能夠實際的應用在這些領域中。由於現有的文獻研究著重於連續型的預測區間以及單一離散型變量的預測區間之應用,這些現有的方法,可能無法直接應用到多變量的狀況。因此,在這篇論文裡,我們所探討的預測區間是在多變量的伯努力分配變數之線性組合的應用。我們主要考量兩大方向:(1)在不同變數下,參數間具有某一相關,(2)在不同變數下,參數之間無特定相關。這個研究方法主要是延伸Wang(2010)所提出的預測區間的方法。我們並以模擬結果來檢驗所提出的預測區間之優劣。zh_TW
dc.description.abstractThe prediction interval is a useful tool to predict the future observations. It can be widely used in industrial and medical applications. Although there are some previous studies focusing on the construction of prediction intervals for continuous distribution or some previous studies focusing on the construction of prediction intervals for discrete distribution of single variable, these meth- ods cannot be directly applied to construct prediction interval for functions of multiple variables. In this thesis, we investigate prediction intervals for a linear function of binomial random variables. We consider two cases: (1) there is a relationship of parameters for di?erent variables, and (2) there is no any relationship of parameters for di?erent variables. The proposed method is an extension of Wang (2010). A simulation result shows the performance of the proposed method.en_US
dc.language.isoen_USen_US
dc.subject覆蓋率zh_TW
dc.subject二項式分配zh_TW
dc.subject預測區間zh_TW
dc.subjectCoverage probabilityen_US
dc.subjectBinominal distributionen_US
dc.subjectPrediction intervalen_US
dc.title二項式分配線性組合之預測區間zh_TW
dc.titlePrediction Interval for a Linear Function of Binomial Random Variablesen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 651501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.