標題: 台灣證券市場權益風險溢酬之估測_比較GARCH-M、移動視窗和MIDAS模型
Estimation of Equity Risk Premiums in Taiwan Security Market: Comparison in Using GARCH-M, Rolling Window and MIDAS Model
作者: 楊喜媛
Yang, Sii-Yuan
洪志洋
王耀德
Hung, Chih-Young
Wang, Yau-De
管理科學系所
關鍵字: 權益風險溢酬;混合數據抽樣模型;跨期資本資產定價模型;自我相關條件異質變異模型;風險報酬抵換;Equity Risk Premium;GARCH-M;ICAPM;MIDAS;Risk-Return Tradeoff
公開日期: 2011
摘要: 本篇論文使用Ghysel (2005)所提出混合數據抽樣模型(Mixed Data Sampling),探討台灣證券交易市場的權益風險溢酬,在引入市場報酬的條件期望值和條件變異數下,以跨期資本資產定價模型為基礎來進行估計與預測。樣本期間自2006年1月至2010年12月,以股票報酬之條件變異數作為風險替代變數,預測對象是以月頻率為單位,觀察資料則為日/週頻率,針對不同的權重函數和波動因子,進行和GARCH-in-mean模型與移動視窗模型之比較。 實證結果發現:(1) 此樣本期間之風險和權益風險溢酬有負向關係存在。(2) MIDAS模型在時間序列資料的迴歸估計能力較顯著,其次是移動視窗法,且樣本外資料的預測誤差偏小,表示預測能力良好。(3) 根據不同的波動因子和抽樣頻率,以日頻率報酬資料的平方多項式有著較顯著估計結果。有別於傳統研究方法,混合數據抽樣模型最大特點為採用不同頻率資料,配適出最佳迴歸模型,以此估計證券市場的條件變異和風險報酬。
This paper investigates risk premiums of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) by using Ghysel’s mixed data sampling (MIDAS) model which is a new regression regarding volatility estimation. We study the intertemporal relation between conditional mean and conditional variance of the aggregate stock market return. Compared with various approaches such as GARCH-in-mean, rolling window and MIDAS models, we find that: (i) We support for a negative relation between risk and equity risk premium in TSEC weighted index during the period 2006 - 2010. (ii) MIDAS is more convincing in predicting regression for sampled time-series data. (iii) Empirical results show out-sample forecasting ability of MIDAS model also performs well. Specifically, it has smaller forecasting error. (iv) Under MIDAS model of different volatility predictors and different sampling frequencies, a squared premium polynomial with daily frequency data has better estimation.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079931530
http://hdl.handle.net/11536/50030
Appears in Collections:Thesis


Files in This Item:

  1. 153001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.