标题: 一个基于特征值的演讲语音自动摘要产生器
A Feature-Based Automatic Speech Digest Generator
作者: 吴御柔
Wu, Yu-Rou
罗济群
Lo, Chi-Chun
资讯管理研究所
关键字: 自动摘要;特征值;Automatic Summarization;Feature
公开日期: 2011
摘要: 因为网路和可携带式装置的普及,影音资讯的数量近年来迅速成长,因此语音自动摘要日益重要。过去主要是对广播、新闻报导等语音资料进行研究探讨,然而适合用于上述的自动摘要方法或其特征值并不一定适合于其他语音资料中(例如:演讲语音),因为自动摘要方法和特征值皆会语音资料类型不同而有不同的表现,因此本篇论文将针对演讲者的内容进行演讲语音自动摘要。故本研究利用过去已存在之自动摘要技术常使用的特征值,提出一个三阶段式的即时演讲语音自动摘要产生器(Real-Time Speech Summarizer ,RTSS)。第一阶段为计算独立性特征值分数,第二阶段为计算依赖性与独立性特征值结合之特征值分数,第三阶段则将上述两阶段的特征值分数进行比较,保留较佳的特征值对其加权平均,然后挑选出分数较高的句子后,重新排序得到摘要句。在实验中,采专家判定的摘要句与RTSS挑选出的摘要句比对,实验结果RTSS整体表现的宏观F值(Macro F-Measure)为52%,宏观正确率(Macro Accuracy)为70%,显示RTSS为一有用的辅助工具,它能帮助使用者在短时间内了解语音资讯中所要表达的大部分重点内容。
As the number of speech and video documents is increasing on the Internet and portable devices, speech summarization has become more important in these years. In usual, the research domain focused on the domain of broadcast and news. Unfortunately, the method of automatic summarization used in the past may not suit to other speech domains (e.g. lecture speech). Therefore, this thesis focuses on the research of lecture speech domain. We analyze the features used in past research, choose the suitable features through experimental, and propose a three-phase Real-Time Speech Summarizer (RTSS). Phase one chooses independent features (e.g. centrality, resemblance to the title, sentence length, term frequency, and thematic word) and calculates the independent features-scores; phase two calculates the dependent feature such as position with above-mentioned independent features-scores; phase three compares the above-mentioned feature-scores, weighted average the function-scores to find the top score sentence, and get the summary. With the experimental, RTSS are evaluated by comparing the summary sentence set selecting from RTSS and five experts. RTSS is a useful that the Macro F-Measure score is 52%, and the Macro Accuracy is 70% that can help users to get the key information of speech.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079934509
http://hdl.handle.net/11536/50132
显示于类别:Thesis