完整後設資料紀錄
DC 欄位語言
dc.contributor.author袁倫賜en_US
dc.contributor.authorYuan, Luen-Tszen_US
dc.contributor.author李漢星en_US
dc.contributor.authorLee, Han-Hsingen_US
dc.date.accessioned2014-12-12T01:58:43Z-
dc.date.available2014-12-12T01:58:43Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079939523en_US
dc.identifier.urihttp://hdl.handle.net/11536/50297-
dc.description.abstract在2007年的全球金融風暴過後,不僅學術界對企業的違約風險非常的重視,實務界亦然,因此,如何能夠更準確的預測企業違約風險成為一個重要的研究課題。本篇研究根據 Duan and Fulop (2009) 所提出的平滑局部化取樣/重要性重新取樣粒子濾波器(smoothed localized sampling/importance resampling particle filter)架構去處理在有交易雜訊(trading noise)下之結構式模型估計。我們的模型在障礙選擇權的架構下以結構式方法進行公司有價證券訂價,本研究結果指出交易雜訊在流動性差的股票上會有顯著的影響,而且可能對於波動度與破產機率的估計產生影響。zh_TW
dc.description.abstractAfter the worldwide financial crisis in 2007, credit risk of a company is getting vast attention not only from academic but also from practitioners. It is of interest for researchers to more accurately model and estimate the default risk of a firm. In this paper, we apply the method proposed by Duan and Fulop (2009), the smoothed localized sampling/importance resampling (SL-SIR) particle filter, to deal with the structural model estimation in the presence of trading noise. Our model employs the structural approach for valuing corporate securities under the barrier option framework. Our results suggest that trading noise can be substantial for the less liquid stocks and may potentially affect volatility and default probability estimation.en_US
dc.language.isoen_USen_US
dc.subject障礙選擇權模型zh_TW
dc.subject粒子濾波器zh_TW
dc.subject結構式信用風險模型zh_TW
dc.subject交易雜訊zh_TW
dc.subjectBarrier modelen_US
dc.subjectParticle filteren_US
dc.subjectStructural credit risk modelen_US
dc.subjectTrading noiseen_US
dc.title在交易雜訊下估計具違約邊界之結構化信用風險模型zh_TW
dc.titleEstimating the Structural Credit risk model with default boundaries in the presence of equity trading noiseen_US
dc.typeThesisen_US
dc.contributor.department財務金融研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 952301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。