完整後設資料紀錄
DC 欄位語言
dc.contributor.author梁喬峰en_US
dc.contributor.authorLiang, Chiau-Fengen_US
dc.contributor.author趙禧綠en_US
dc.contributor.authorChao, Hsi-Liuen_US
dc.date.accessioned2014-12-12T01:59:10Z-
dc.date.available2014-12-12T01:59:10Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079955505en_US
dc.identifier.urihttp://hdl.handle.net/11536/50425-
dc.description.abstract近年來,在感知無線電網路(cognitive radio network)中的資源分配持續受到高度關注。在之前的論文中,我們設計了一個運作在電視空白頻譜(TV white space)上的感知無線電雲端網路。為了有效利用電視空白頻譜的資源,我們提出了一個適用於我們系統上的資源管理架構。我們的資源管理架構主要分成三個部分,包括在雲端上的分群及資源管理、在雲端上的功率控制及資源分配、以及在感知無線電存取點上的資源管理。這篇論文中,我們集中在第三部分。具體來說,我們將使用者分成幾個群組、定義一些服務類別、並將使用者的需求轉換成所需頻道數。再雲端完成資源管理前兩層的資源分配及功率控制後,我們設計的演算法將進一步以時間區塊為單位分配資源給感知無線電使用者,並最大化系統的效能。 為了有效率地解決這個問題,我們提出了一個貪婪搜尋演算法,且這個演算化找出的解幾乎近似於最佳解。除此之外,我們提出了優先權參數來達到相同服務類別之使用者之間的公平性。最後,從模擬結果中可以看出,不論在效能上,或是同服務類別的使用者之間的公平性,我們提出的演算法都能產生出色的成果。zh_TW
dc.description.abstractResource allocation in cognitive radio (CR) networks is highly concerned in recent years. We have designed cognitive radio cloud network (CRCN) in TV white space in previous works. To effectively use the resource, we proposed a resource management scheme for our CRCN. Our resource management scheme is separated to three parts, clustering and resource management in Cloud, power control and channel allocation in Cloud, and resource management in CR access points (CRAPs). This paper focuses on the third part. Specifically, we first allocate users to several groups, define several service classes, and map users’ requests to the numbers of required channels. After the first two-tiers channel allocation and power control mechanisms performed at the Cloud, the designed scheduling algorithm further allocates resources (in terms of time slots) to CR users to maximize the sum of throughout utilities. To solve the problem efficiently, we proposed a greedy search algorithm, and the scheduling results are almost close to optimal solutions. In addition, we proposed a priority factor to achieve the inner-class fairness even upon low channel availability. Finally, the simulation results show that no matter in throughput or inner-class fairness, our proposed algorithms can yield excellent results.en_US
dc.language.isoen_USen_US
dc.subject資源分配zh_TW
dc.subject時間區塊zh_TW
dc.subject感知無線電zh_TW
dc.subject效能函式zh_TW
dc.subject雲端網路zh_TW
dc.subjectResource allocationen_US
dc.subjectTimeslotsen_US
dc.subjectCognitive Radioen_US
dc.subjectUtility functionen_US
dc.subjectCloud networken_US
dc.title感知雲端網路中具服務品質的資源分配zh_TW
dc.titleResource Allocation with QoS Support in Cognitive Radio Cloud Networken_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 550501.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。