标题: | 云端环境中有效率之地理资料配置研究 An Efficient Geometry Data Allocation Algorithm in Cloud Environments |
作者: | 王堃玮 Wang, Kun-Wei 彭文志 Peng, Wen-Chih 资讯科学与工程研究所 |
关键字: | 资料配置;地理运算;云端运算;Data Allocation;Geometry Computation;Cloud Compuitng |
公开日期: | 2012 |
摘要: | 如今,越来越多的地理位置服务被发明出来,这些地理位置服务通常需要大量的地理资料运算而造成地理位置服务的工作量都十分的高,因此我们希望可以透过云端运算的技术使得地理位置服务的工作量可以分散地执行。然而,即使我们将地理位置服务放置于云端环境上执行,工作量仍然没有被分散地执行,因为地理资料并没有均匀分布。为了可以使用到最多的机器做运算,我们提出了一些地理资料配置方法。直观上,我们可以将地图像贴磁砖似地切割成数个等大的区域,接下来将每块区域分派至不同的机器,当需要储存地理资料时,就可以找出这一比地理资料所属的区域然后将资料储存至此区域相对应的机器中,但不幸的是,在同一个区域的地理资料彼此是相靠近的,当我们处理查询范围的地理资料运算时,仍然需要非常大的工作量。为了解决这个问题,我们提出了一个新的地理资料配置方法“Reversed K-means”,运用这个方法可以将彼此相靠近的地理资料分散在不同的机器之中,因此在执行一个查询范围的地理资料运算时,可以用到更多的机器去做运算因为所需的资料是被储存在很多的机器之中,藉此提升地理资料运算的效能。为了评估我们所提出方法的效能,我们评估了执行地理资料运算所需的机器数量以及所需的运算时间。实验结果证明,机器的用量是比现有的方法多以及所需时间也是在所有方法中最小的。 The number of location-based services is growing and developing. Usually, these services put a huge amount of effort into geometry data computation. Thus, their workload is generally high. By exploring cloud computing techniques, one could utilize a number of computing nodes to distribute the workload of the systems. However, the workload is usually not equally balanced across computing nodes, if data is not well-distributed. To make the best use of computing nodes, we propose a sophisticated data distribution technology for geometry computation processing. Intuitively, one can simply divide geometry data into tiles so that the geometry data in each tile can be stored on one computing node. Unfortunately, since data in a tile shares spatial-proximity, processing a geometry computation on spatial-proximity data still incurs a huge workload. To address this issue, we propose a new data distribution approach, Reversed K-means, to distribute geometry data that shares spatial-proximity across different computing nodes. In this way, we can use more computing nodes to process geometry computation and get better performance. To evaluate the performance of our proposed algorithm, we evaluate the utility of computing nodes and the response time when performing geometry computations. The experimental results show that the utility of the computing nodes is higher than existing methods, and the response time is the fastest of all methods. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079955508 http://hdl.handle.net/11536/50427 |
显示于类别: | Thesis |