完整後設資料紀錄
DC 欄位語言
dc.contributor.author詹子杰en_US
dc.contributor.authorChan, Tzu-Chiehen_US
dc.contributor.author陳玲慧en_US
dc.contributor.authorChen, Ling-Hweien_US
dc.date.accessioned2014-12-12T01:59:50Z-
dc.date.available2014-12-12T01:59:50Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079957506en_US
dc.identifier.urihttp://hdl.handle.net/11536/50585-
dc.description.abstract近年來,以生物特徵為基礎的認證系統已經廣泛的被應用在我們的日常生活中,像是智慧型手機、筆記型電腦、門禁管理…等。聲音為人類最自然、簡單的表現行為,將其應用在以生物特徵為基礎的認證系統中是合適的。因為不同錄音裝置還有錄音環境的影響,會導致以聲音為基礎的認證系統辨識率下降。而我們稱這些錄音裝置還有環境的影響叫做通道效應。在本論文中,我們提出了一個去除通道效應的新方法。基於已被廣泛使用的梅爾倒頻譜(Mel-scale frequency cepstral coefficients)係數特徵,使用我們的去除通道效應方法去取得新特徵。然後根據我們取出的新特徵和高斯混合模型(Gaussian Mixture Models),就可以判斷語者是誰。根據實驗結果,我們的去通道效應方法擁有比較高的辨識率。zh_TW
dc.description.abstractIn recent years, the biometric-based authentication systems have been widely used in our life, like the smart-phones, laptops, access control systems, etc. As the most natural, economical, and expressive behavior, the voice is a suitable characteristic for an authentication system. But the channel effects that speeches recorded form different record devices or in a noisy environment make the identification rate decreased. In this thesis, we provide a new channel effect remover to improve the identification rate. Based on the Mel-scale frequency cepstral coefficients (MFCC) features, we use our channel effect remover to extract the new features. According to these new features and Gaussian Mixture models (GMMs), we can recognize the speaker. Experiment results show that our method has higher identification rate than other methods.en_US
dc.language.isoen_USen_US
dc.subject語者辨別zh_TW
dc.subject高斯混合模型zh_TW
dc.subject梅爾倒頻譜係數zh_TW
dc.subjectspeaker identificationen_US
dc.subjectGaussian mixture modelen_US
dc.subjectMFCCen_US
dc.title語者辨別的研究zh_TW
dc.titleA Study on Speaker Identificationen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 750601.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。