完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 张良成 | en_US |
dc.contributor.author | Chang, Liang-Cheng | en_US |
dc.contributor.author | 林进灯 | en_US |
dc.contributor.author | Lin, Chin-Teng | en_US |
dc.date.accessioned | 2014-12-12T01:59:51Z | - |
dc.date.available | 2014-12-12T01:59:51Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079957514 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/50590 | - |
dc.description.abstract | 我们提出了权重式重取样粒子滤波器演算法,并应用于主动式摄影机上做人形追踪。本系统主要有三部分,分别是人形侦测,人形追踪和摄影机的控制。在人形侦测方面使用编码比对去得到人形区域,而粒子滤波器会对每张输入的影片估测出人形的位置。我们在重取样中选择具有高权重的粒子,因为这能让追踪特征更精确。此外比例-积分-微分控制器(PID controller)用来控制主动式摄影机,藉由最小化介于影片中心和物体位置的误差,并转换此误差为pan-tilt速度来驱动摄影机移动让被追踪的人保持在影片的可视范围内。在追踪过程中,影像的强度和人的特征也会随之变化。因此高斯混和模型(GMM)会随着时间来更新人的特征模型。至于短暂的遮蔽问题可透过特征相似度和重新取样粒子来解决。而粒子滤波器能估测出每张输入影像里人形的位置,因此可以平滑地驱动主动式摄影机。 | zh_TW |
dc.description.abstract | We proposed a weighted resampling algorithm for particle filter and applied for human tracking on active camera. The system consists of three major parts which are human detection, human tracking, and camera control. The codebook matching algorithm is used to extract human region in human detection system, and the particle filter algorithm is estimating the position of the human in every input image. We select particles with high weighting value in resampling, because it will give higher accurate tracking features. Moreover, a proportional–integral–derivative controller (PID controller) controls the active camera by minimizing difference between center of image and the object’s position obtained from particle filter, also convert the position difference into pan-tilt speed to drive the active camera and keep the human in the field of view (FOV) camera. The intensity of image may change over tracking, and so do the human features. Therefore, the Gaussian mixture model (GMM) algorithm is used to update the human feature model overtime. As regards, the temporal occlusion problem is solved by feature similarity and the resampling particles. Also, the particle filter is estimating the position of human in every input frames, thus the active camera will drive smoothly. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 人形追踪 | zh_TW |
dc.subject | 粒子滤波器 | zh_TW |
dc.subject | 色彩分布 | zh_TW |
dc.subject | PID控制器 | zh_TW |
dc.subject | 编码比对 | zh_TW |
dc.subject | 主动式摄影机 | zh_TW |
dc.subject | Human tracking | en_US |
dc.subject | Particle filter | en_US |
dc.subject | Color distribution | en_US |
dc.subject | PID controller | en_US |
dc.subject | Codebook matching | en_US |
dc.subject | Active camera | en_US |
dc.title | 应用于主动式摄影机上的权重式重取样粒子滤波器的人形追踪 | zh_TW |
dc.title | Weighted resampling particle filter for human tracking on an active camera | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 多媒体工程研究所 | zh_TW |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.