完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Yung-Mingen_US
dc.contributor.authorLin, Chia-Haoen_US
dc.contributor.authorLai, Cheng-Yangen_US
dc.date.accessioned2014-12-08T15:06:35Z-
dc.date.available2014-12-08T15:06:35Z-
dc.date.issued2010-07-01en_US
dc.identifier.issn1567-4223en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.elerap.2010.02.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/5153-
dc.description.abstractThe key to word-of-mouth marketing is to discover the potential influential nodes for efficiently spreading product impressions. In this paper, a framework combined with mining techniques, a modified PMI measure, and an adaptive RFM model is proposed to evaluate the influential power of online reviewers. An artificial neural network is adopted to identify the target reviewers and a well-developed trust mechanism is utilized for effectiveness evaluation. This proposed framework is verified by the data collected from Epinions.com, one of the most popular online product review websites. The experimental results show that the proposed model could accurately identify which reviewers to select to become the influential nodes. This proposed approach can be exploited in effectively carrying out online word-of-mouth marketing, which can save a lot of resources in finding customers. (C) 2010 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectWord-of-mouth marketingen_US
dc.subjectSocial networken_US
dc.subjectOpinion miningen_US
dc.subjectTrusten_US
dc.subjectRFMen_US
dc.subjectPMIen_US
dc.titleIdentifying influential reviewers for word-of-mouth marketingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.elerap.2010.02.004en_US
dc.identifier.journalELECTRONIC COMMERCE RESEARCH AND APPLICATIONSen_US
dc.citation.volume9en_US
dc.citation.issue4en_US
dc.citation.spage294en_US
dc.citation.epage304en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000279065200004-
dc.citation.woscount17-
顯示於類別:期刊論文


文件中的檔案:

  1. 000279065200004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。