完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, PCen_US
dc.date.accessioned2014-12-08T15:01:44Z-
dc.date.available2014-12-08T15:01:44Z-
dc.date.issued1997-06-01en_US
dc.identifier.issn0098-3500en_US
dc.identifier.urihttp://hdl.handle.net/11536/515-
dc.description.abstractThe demand for random numbers in scientific applications is increasing. However, the most widely used multiplicative, congruential random-number generators with modulus 2(31) - 1 have a cycle length of about 2.1 X 10(9). Moreover, developing portable and efficient generators with a larger modulus such as 2(61) - 1 is more difficult than those with modulus 2(31) - 1. This article presents the development of multiplicative, congruential generators with modulus m = 2(p) - 1 and four forms of multipliers: 2(k1) - 2(k2), 2(k1) + 2(k2), m - 2(k1) + 2(k2), and m - 2(k1) - 2(k2), k1 > k2. The multipliers for modulus 2(31) - 1 and 2(61) - 1 are measured by spectral tests, and the best ones are presented. The generators with these multipliers are portable and very fast. They have also passed several empirical tests, including the frequency test, the run test, and the maximum-of-t test.en_US
dc.language.isoen_USen_US
dc.subjectcycle lengthen_US
dc.subjectefficiencyen_US
dc.subjectmultiplicative congruential random-number generatorsen_US
dc.subjectportabilityen_US
dc.subjectspectral testen_US
dc.titleMultiplicative, congruential random-number generators with multiplier +/-2(k1)+/-2(k2) and modulus 2(p)-1en_US
dc.typeArticleen_US
dc.identifier.journalACM TRANSACTIONS ON MATHEMATICAL SOFTWAREen_US
dc.citation.volume23en_US
dc.citation.issue2en_US
dc.citation.spage255en_US
dc.citation.epage265en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:A1997YF11000008-
dc.citation.woscount16-
顯示於類別:期刊論文


文件中的檔案:

  1. A1997YF11000008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。