完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Jinn-Minen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorYu, Pao-Taen_US
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.date.accessioned2014-12-08T15:06:37Z-
dc.date.available2014-12-08T15:06:37Z-
dc.date.issued2010-07-01en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TGRS.2010.2043533en_US
dc.identifier.urihttp://hdl.handle.net/11536/5180-
dc.description.abstractMany studies have demonstrated that multiple classifier systems, such as the random subspace method (RSM), obtain more outstanding and robust results than a single classifier on extensive pattern recognition issues. In this paper, we propose a novel subspace selection mechanism, named the dynamic subspace method (DSM), to improve RSM on automatically determining dimensionality and selecting component dimensions for diverse subspaces. Two importance distributions are proposed to impose on the process of constructing ensemble classifiers. One is the distribution of subspace dimensionality, and the other is the distribution of band weights. Based on the two distributions, DSM becomes an automatic, dynamic, and adaptive ensemble. The real data experimental results show that the proposed DSM obtains sound performances than RSM, and that the classification maps remarkably produce fewer speckles.en_US
dc.language.isoen_USen_US
dc.subjectKernel smoothing (KS)en_US
dc.subjectrandom subspace method (RSM)en_US
dc.subjectsmall sample size (SSS) classificationen_US
dc.titleA Dynamic Subspace Method for Hyperspectral Image Classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2010.2043533en_US
dc.identifier.journalIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSINGen_US
dc.citation.volume48en_US
dc.citation.issue7en_US
dc.citation.spage2840en_US
dc.citation.epage2853en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000281789800007-
dc.citation.woscount21-
顯示於類別:期刊論文


文件中的檔案:

  1. 000281789800007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。