Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Yimingen_US
dc.date.accessioned2014-12-08T15:06:38Z-
dc.date.available2014-12-08T15:06:38Z-
dc.date.issued2007-02-01en_US
dc.identifier.issn0167-9317en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mee.2006.02.010en_US
dc.identifier.urihttp://hdl.handle.net/11536/5190-
dc.description.abstractWe in this paper present an computational intelligence technique to extract semiconductor device model parameters. This solution methodology is based on a genetic algorithm (GA) with an exponential type weight function, renew operator, and adaptive sampling scheme. The proposed approach automatically extracts a set of complete parameters with respect to a specified compact model, such as a BSIM model for deep-submicron and nanoscale complementary metal-oxide-semiconductor (CMOS) devices. Compared with conventional artificial step-by-step fitting approaches, the proposed extraction methodology automatically tracks the shape variation of current-voltage (I-V) curves and examines the first derivative of I-V curves; therefore, highly accurate results can be obtained directly. Applying the renew operator will keep the evolutionary trend improving by removing the individuals without mainly features. The sampling strategy will speed up the evolution process and still maintain the extraction accuracy in a reasonable range. A developed prototype is successfully applied to extract model parameter of N- and P-metal-oxide-semiconductor field effect transistors (MOSFETs). This optimization method shows good physical accuracy and computational performance, and provides an alternative for optimal device modeling and circuit design in nanodevice era. Genetic algorithm based automatic model parameter extraction bridges the communities between circuit design and chip fabrication; in particular, it will significantly benefits design of system-on-a-chip. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcomputational intelligenceen_US
dc.subjectgenetic algorithmen_US
dc.subjectextraction methodologyen_US
dc.subjectcomputer-aided designen_US
dc.subjectcompact modelen_US
dc.subjectparameter qualityen_US
dc.subjectCMOS devicesen_US
dc.titleAn automatic parameter extraction technique for advanced CMOS device modeling using genetic algorithmen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/j.mee.2006.02.010en_US
dc.identifier.journalMICROELECTRONIC ENGINEERINGen_US
dc.citation.volume84en_US
dc.citation.issue2en_US
dc.citation.spage260en_US
dc.citation.epage272en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000244383000009-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000244383000009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.