標題: Structured backward error for palindromic polynomial eigenvalue problems
作者: Li, Ren-Cang
Lin, Wen-Wei
Wang, Chern-Shuh
應用數學系
Department of Applied Mathematics
公開日期: 1-七月-2010
摘要: A detailed structured backward error analysis for four kinds of palindromic polynomial eigenvalue problems (PPEP) (Sigma(d)(l=0)A(l)lambda(l)) x = 0, A(d-l) = epsilon A(l)(star) for l = 0, 1, ..., left perpendiculard/2right perpendicular, where star is one of the two actions: transpose and conjugate transpose, and epsilon is an element of {+/- 1}. Each of them has its application background with the case star taking transpose and epsilon = 1 attracting a great deal of attention lately because of its application in the fast train modeling. Computable formulas and bounds for the structured backward errors are obtained. The analysis reveals distinctive features of PPEP from general polynomial eigenvalue problems (PEP) investigated by Tisseur (Linear Algebra Appl 309: 339-361, 2000) and by Liu and Wang (Appl Math Comput 165: 405-417, 2005).
URI: http://dx.doi.org/10.1007/s00211-010-0297-4
http://hdl.handle.net/11536/5231
ISSN: 0029-599X
DOI: 10.1007/s00211-010-0297-4
期刊: NUMERISCHE MATHEMATIK
Volume: 116
Issue: 1
起始頁: 95
結束頁: 122
顯示於類別:期刊論文


文件中的檔案:

  1. 000279307000004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。