標題: | 一對廣義圈型線性變換的研究 The Weakly Cyclic Pairs of Linear Transformations |
作者: | 陳宏嘉 翁志文 應用數學系所 |
關鍵字: | 廣義圈型;Weakly Cyclic Pairs |
公開日期: | 2003 |
摘要: | 令X是個方陣,當主對角線正下方及第一列最後一行的元素都非零,其他非對角線之元素皆為零,我們稱X為廣義圈型。在有限維的向量空間V中,如果兩線性變換A:V → V、B:V → V滿足下列條件(1),(2)則我們稱(A,B)為一對廣義圈型線性變換,
(1) V中存在一個基底可以使的A的矩陣表示為對角矩陣,B的矩陣表示為廣義圈型。
(2) V中存在一個基底可以使的B的矩陣表示為對角矩陣,A的矩陣表示為廣義圈型。
我們將會給一對廣義圈型線性變換存在的兩個必要條件。 Let X be a square matrix. We say X is weak cyclic when each of the entries in the lower diagonal and in the last column of the lower diagonal are nonzero and all the other nondiagonal entries of X are zero. Let V denote a vector space over C with finite positive dimension. By a weakly cyclic pair on V we mean an ordered pair of linear transformations A:V → V and B:V → V that satisfies conditions (i), (ii) below. (i). There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing B is weakly cyclic. (ii). There exists a basis for V with respect to which the matrix representing B is diagonal and the matrix representing A is weakly cyclic. We give two necessary conditions among the eigenvalues and the coefficients in some representing matrix of a weak cyclic pair. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009122524 http://hdl.handle.net/11536/52380 |
顯示於類別: | 畢業論文 |