標題: Unitary part of a contraction
作者: Gau, Hwa-Long
Wu, Pei Yuan
應用數學系
Department of Applied Mathematics
關鍵字: Contraction Unitary part;Completely nonunitary part;S(n)-operator;Norm-one index
公開日期: 15-六月-2010
摘要: For a contraction A on a Hilbert space H, we define the index j(A) (resp.. k(A)) as the smallest nonnegative integer j (resp., k) such that ker(I - A(j)*A(j)) (resp., ker(I - A(k)*A(k)) boolean AND ker(I - A(k)*A(k)*)) equals the subspace of H on which the unitary part of A acts. We show that if n = dim H < infinity, then j(A) <= n (resp., k(A) <= left particularn/2left particular). and the equality holds if and only if A is of class S, (resp., one of the three conditions is true: (1) A is of class S, (2) n is even and A is completely nonunitary with parallel to A(n-2)parallel to = 1 and parallel to A(n-1)parallel to < 1. and (3) n is even and A = U circle times A', where U is unitary on a one-dimensional space and A' is of class S(n-1)). (C) 2010 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.jmaa.2010.01.040
http://hdl.handle.net/11536/5266
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.01.040
期刊: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volume: 366
Issue: 2
起始頁: 700
結束頁: 705
顯示於類別:期刊論文


文件中的檔案:

  1. 000275290000027.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。