Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:06:43Z-
dc.date.available2014-12-08T15:06:43Z-
dc.date.issued2010-06-15en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jmaa.2010.01.040en_US
dc.identifier.urihttp://hdl.handle.net/11536/5266-
dc.description.abstractFor a contraction A on a Hilbert space H, we define the index j(A) (resp.. k(A)) as the smallest nonnegative integer j (resp., k) such that ker(I - A(j)*A(j)) (resp., ker(I - A(k)*A(k)) boolean AND ker(I - A(k)*A(k)*)) equals the subspace of H on which the unitary part of A acts. We show that if n = dim H < infinity, then j(A) <= n (resp., k(A) <= left particularn/2left particular). and the equality holds if and only if A is of class S, (resp., one of the three conditions is true: (1) A is of class S, (2) n is even and A is completely nonunitary with parallel to A(n-2)parallel to = 1 and parallel to A(n-1)parallel to < 1. and (3) n is even and A = U circle times A', where U is unitary on a one-dimensional space and A' is of class S(n-1)). (C) 2010 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectContraction Unitary parten_US
dc.subjectCompletely nonunitary parten_US
dc.subjectS(n)-operatoren_US
dc.subjectNorm-one indexen_US
dc.titleUnitary part of a contractionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2010.01.040en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSen_US
dc.citation.volume366en_US
dc.citation.issue2en_US
dc.citation.spage700en_US
dc.citation.epage705en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000275290000027-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000275290000027.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.