完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:06:43Z | - |
dc.date.available | 2014-12-08T15:06:43Z | - |
dc.date.issued | 2010-06-15 | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jmaa.2010.01.040 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/5266 | - |
dc.description.abstract | For a contraction A on a Hilbert space H, we define the index j(A) (resp.. k(A)) as the smallest nonnegative integer j (resp., k) such that ker(I - A(j)*A(j)) (resp., ker(I - A(k)*A(k)) boolean AND ker(I - A(k)*A(k)*)) equals the subspace of H on which the unitary part of A acts. We show that if n = dim H < infinity, then j(A) <= n (resp., k(A) <= left particularn/2left particular). and the equality holds if and only if A is of class S, (resp., one of the three conditions is true: (1) A is of class S, (2) n is even and A is completely nonunitary with parallel to A(n-2)parallel to = 1 and parallel to A(n-1)parallel to < 1. and (3) n is even and A = U circle times A', where U is unitary on a one-dimensional space and A' is of class S(n-1)). (C) 2010 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Contraction Unitary part | en_US |
dc.subject | Completely nonunitary part | en_US |
dc.subject | S(n)-operator | en_US |
dc.subject | Norm-one index | en_US |
dc.title | Unitary part of a contraction | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2010.01.040 | en_US |
dc.identifier.journal | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | en_US |
dc.citation.volume | 366 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 700 | en_US |
dc.citation.epage | 705 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000275290000027 | - |
dc.citation.woscount | 4 | - |
顯示於類別: | 期刊論文 |