Title: | Complete identification of chaos of nonlinear nonholonomic systems |
Authors: | Chang, Ching-Ming Ge, Zheng-Ming 機械工程學系 Department of Mechanical Engineering |
Keywords: | Chaos;Nonlinear nonholonomic system |
Issue Date: | 1-Jun-2010 |
Abstract: | The chaos of nonholonomic systems with two external nonlinear nonholonomic constraints where the magnitude of velocity is a constant and the magnitude of the velocity is a constant with a periodic disturbance, respectively, is completely identified for the first time. The scope of the chaos study is extended to nonlinear nonholonomic systems. By applying the nonlinear nonholonomic form of Lagrange's equations, the dynamic equation is expressed. The existence of chaos in these two nonlinear nonholonomic systems is first wholly proved by all numerical criteria of chaos, i.e., the most reliable Lyapunov exponents, phase portraits, Poincare maps, and bifurcation diagrams. Furthermore, it is found that the Feigenbaum number still holds for nonlinear nonholonomic systems. |
URI: | http://dx.doi.org/10.1007/s11071-009-9614-9 http://hdl.handle.net/11536/5288 |
ISSN: | 0924-090X |
DOI: | 10.1007/s11071-009-9614-9 |
Journal: | NONLINEAR DYNAMICS |
Volume: | 60 |
Issue: | 4 |
Begin Page: | 551 |
End Page: | 559 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.