Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Ching-Mingen_US
dc.contributor.authorGe, Zheng-Mingen_US
dc.date.accessioned2014-12-08T15:06:44Z-
dc.date.available2014-12-08T15:06:44Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn0924-090Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11071-009-9614-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/5288-
dc.description.abstractThe chaos of nonholonomic systems with two external nonlinear nonholonomic constraints where the magnitude of velocity is a constant and the magnitude of the velocity is a constant with a periodic disturbance, respectively, is completely identified for the first time. The scope of the chaos study is extended to nonlinear nonholonomic systems. By applying the nonlinear nonholonomic form of Lagrange's equations, the dynamic equation is expressed. The existence of chaos in these two nonlinear nonholonomic systems is first wholly proved by all numerical criteria of chaos, i.e., the most reliable Lyapunov exponents, phase portraits, Poincare maps, and bifurcation diagrams. Furthermore, it is found that the Feigenbaum number still holds for nonlinear nonholonomic systems.en_US
dc.language.isoen_USen_US
dc.subjectChaosen_US
dc.subjectNonlinear nonholonomic systemen_US
dc.titleComplete identification of chaos of nonlinear nonholonomic systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11071-009-9614-9en_US
dc.identifier.journalNONLINEAR DYNAMICSen_US
dc.citation.volume60en_US
dc.citation.issue4en_US
dc.citation.spage551en_US
dc.citation.epage559en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000279089500006-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000279089500006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.