Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Chien-Shengen_US
dc.contributor.authorTseng, Wei-Kungen_US
dc.contributor.authorLee, Jen-Kuangen_US
dc.contributor.authorHsiao, Tze-Chienen_US
dc.contributor.authorLin, Chii-Wannen_US
dc.date.accessioned2014-12-08T15:06:48Z-
dc.date.available2014-12-08T15:06:48Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn1350-4533en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.medengphy.2010.04.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/5331-
dc.description.abstractThe advances in electrocardiographic (ECG) technology have facilitated the development of numerous successful clinical applications and commercial monitoring products for diagnosing disease and monitoring health. All of these demand the development of smart algorithms and computational resources for the real-time, early indication of critical cardiac conditions. This study presents the development of a Complex Phase Space Difference (CPSD) algorithm with differential method to analyze spatial and temporal changes in reconstructed phase space matrix, and derives an index for real-time monitoring. We used total of 5306 data segments from MIT-BIH, CU, and SCDH databases and clinical trial data to determine the optimal working parameters and verified the classification capability by using a quantitative index of this algorithm. With threshold values set to 2.0 and 6.0, this method can successfully differentiate normal sinus rhythm (NSR) signals (1.48 +/- 0.21), low risk of atrial fibrillation (AF) signals (3.71 +/- 0.99) and high risk of ventricular fibrillation (VF) signals (9.38 +/- 2.22). It is the first real-time algorithm that reports the best performance to distinguish AF and VF with sensitivity of 97.9% and specificity of 98.4%. With self-normalization, the algorithm is not subjected to the inter-variability or sampling size effects. Its computational scheme only requires matrices addition and subtraction, and thus significantly reduces the complexity for real-time implementation. It will be able to adopt in different scenarios of tele-healthcare and implantable applications. (C) 2010 IPEM. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectElectrocardiographyen_US
dc.subjectPhase space matrixen_US
dc.subjectAtrial fibrillationen_US
dc.subjectVentricular fibrillationen_US
dc.subjectReal-time analysisen_US
dc.titleThe differential method of phase space matrix for AF/VF discrimination applicationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.medengphy.2010.04.001en_US
dc.identifier.journalMEDICAL ENGINEERING & PHYSICSen_US
dc.citation.volume32en_US
dc.citation.issue5en_US
dc.citation.spage444en_US
dc.citation.epage453en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000278628600005-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000278628600005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.