標題: | Approximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbations |
作者: | Li, Ming-Chia Malkin, M. I. 應用數學系 Department of Applied Mathematics |
關鍵字: | chaotic dynamics;difference equations;one-dimensional maps;topological entropy;hyperbolic orbits |
公開日期: | 1-六月-2010 |
摘要: | We consider piecewise monotone (not necessarily, strictly) piecewise C (2) maps on the interval with positive topological entropy. For such a map f we prove that its topological entropy h (top)(f) can be approximated (with any required accuracy) by restriction on a compact strictly f-invariant hyperbolic set disjoint from some neighborhood of prescribed set consisting of periodic attractors, nonhyperbolic intervals and endpoints of monotonicity intervals. By using this result we are able to generalize main theorem from [1] on chaotic behavior of multidimensional perturbations of solutions for difference equations which depend on two variables at nonperturbed value of parameter. |
URI: | http://dx.doi.org/10.1134/S1560354710020097 http://hdl.handle.net/11536/5358 |
ISSN: | 1560-3547 |
DOI: | 10.1134/S1560354710020097 |
期刊: | REGULAR & CHAOTIC DYNAMICS |
Volume: | 15 |
Issue: | 2-3 |
起始頁: | 210 |
結束頁: | 221 |
顯示於類別: | 期刊論文 |