Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Ming-Chiaen_US
dc.contributor.authorMalkin, M. I.en_US
dc.date.accessioned2014-12-08T15:06:50Z-
dc.date.available2014-12-08T15:06:50Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn1560-3547en_US
dc.identifier.urihttp://dx.doi.org/10.1134/S1560354710020097en_US
dc.identifier.urihttp://hdl.handle.net/11536/5358-
dc.description.abstractWe consider piecewise monotone (not necessarily, strictly) piecewise C (2) maps on the interval with positive topological entropy. For such a map f we prove that its topological entropy h (top)(f) can be approximated (with any required accuracy) by restriction on a compact strictly f-invariant hyperbolic set disjoint from some neighborhood of prescribed set consisting of periodic attractors, nonhyperbolic intervals and endpoints of monotonicity intervals. By using this result we are able to generalize main theorem from [1] on chaotic behavior of multidimensional perturbations of solutions for difference equations which depend on two variables at nonperturbed value of parameter.en_US
dc.language.isoen_USen_US
dc.subjectchaotic dynamicsen_US
dc.subjectdifference equationsen_US
dc.subjectone-dimensional mapsen_US
dc.subjecttopological entropyen_US
dc.subjecthyperbolic orbitsen_US
dc.titleApproximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1560354710020097en_US
dc.identifier.journalREGULAR & CHAOTIC DYNAMICSen_US
dc.citation.volume15en_US
dc.citation.issue2-3en_US
dc.citation.spage210en_US
dc.citation.epage221en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000277098300009-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000277098300009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.