完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Ming-Chiaen_US
dc.contributor.authorMalkin, M. I.en_US
dc.date.accessioned2014-12-08T15:06:50Z-
dc.date.available2014-12-08T15:06:50Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn1560-3547en_US
dc.identifier.urihttp://dx.doi.org/10.1134/S1560354710020097en_US
dc.identifier.urihttp://hdl.handle.net/11536/5358-
dc.description.abstractWe consider piecewise monotone (not necessarily, strictly) piecewise C (2) maps on the interval with positive topological entropy. For such a map f we prove that its topological entropy h (top)(f) can be approximated (with any required accuracy) by restriction on a compact strictly f-invariant hyperbolic set disjoint from some neighborhood of prescribed set consisting of periodic attractors, nonhyperbolic intervals and endpoints of monotonicity intervals. By using this result we are able to generalize main theorem from [1] on chaotic behavior of multidimensional perturbations of solutions for difference equations which depend on two variables at nonperturbed value of parameter.en_US
dc.language.isoen_USen_US
dc.subjectchaotic dynamicsen_US
dc.subjectdifference equationsen_US
dc.subjectone-dimensional mapsen_US
dc.subjecttopological entropyen_US
dc.subjecthyperbolic orbitsen_US
dc.titleApproximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1560354710020097en_US
dc.identifier.journalREGULAR & CHAOTIC DYNAMICSen_US
dc.citation.volume15en_US
dc.citation.issue2-3en_US
dc.citation.spage210en_US
dc.citation.epage221en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000277098300009-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000277098300009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。