完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChu, Eric King-wahen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWu, Chin-Tienen_US
dc.date.accessioned2014-12-08T15:06:50Z-
dc.date.available2014-12-08T15:06:50Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/5362-
dc.description.abstractThe T-palindromic quadratic eigenvalue problem (lambda(2)B + lambda C + A)x = 0, with A, B,C is an element of C(nxn), C(T) = C and B(T) = A, governs the vibration behaviour of trains. Other palindromic eigenvalue problems, quadratic or higher order, arise from applications in surface acoustic wave filters, optimal control of discrete-time systems and crack modelling. Numerical solution of palindromic eigenvalue problems is challenging, with unacceptably low accuracy from the basic linearization approach. In this survey paper, we shall talk about the history of palindromic eigenvalue problems, in terms of their history, applications, numerical solution and generalization. We shall also speculate on some future directions of research.en_US
dc.language.isoen_USen_US
dc.subjectCracken_US
dc.subjectCrawford numberen_US
dc.subjectEigenvalueen_US
dc.subjectEigenvectoren_US
dc.subjectMatrix polynomialen_US
dc.subjectPalindromic eigenvalue problemen_US
dc.subjectTrain vibrationen_US
dc.subjectSAW filteren_US
dc.titlePALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEYen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume14en_US
dc.citation.issue3Aen_US
dc.citation.spage743en_US
dc.citation.epage779en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000278880400002-
dc.citation.woscount6-
顯示於類別:期刊論文