Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kuo, D | en_US |
dc.contributor.author | Chang, GJ | en_US |
dc.contributor.author | Kwong, YHH | en_US |
dc.date.accessioned | 2014-12-08T15:01:46Z | - |
dc.date.available | 2014-12-08T15:01:46Z | - |
dc.date.issued | 1997-05-15 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/540 | - |
dc.description.abstract | Suppose G = (V,E) is a graph with vertex set V and edge set E. A vertex labeling f: V --> (0, 1) induces an edge labeling f*: E --> (0, 1) defined by f*(ny) = If(x)- f(y)l. For i is an element of (0, 1), let v(f)(i) and e(f)(i) be the number of vertices v and edges e with f(v) = i and f*(e) = i, respectively. A graph G is cordial if there exists a vertex labeling f such that v(f)(0) - v(f)(1)less than or equal to 1 and e(f)(0) - e(f)(1) less than or equal to 1. This paper determines all m and n for which mK(n) is cordial. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | cordial labeling | en_US |
dc.subject | graceful labeling | en_US |
dc.subject | Diophantine equation | en_US |
dc.title | Cordial labeling of mK(n) | en_US |
dc.type | Article | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 169 | en_US |
dc.citation.issue | 1-3 | en_US |
dc.citation.spage | 121 | en_US |
dc.citation.epage | 131 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1997XC18000008 | - |
dc.citation.woscount | 6 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.