Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Yen-Linen_US
dc.contributor.authorLu, Chin Lungen_US
dc.date.accessioned2014-12-08T15:07:00Z-
dc.date.available2014-12-08T15:07:00Z-
dc.date.issued2010-05-01en_US
dc.identifier.issn1066-5277en_US
dc.identifier.urihttp://dx.doi.org/10.1089/cmb.2009.0025en_US
dc.identifier.urihttp://hdl.handle.net/11536/5470-
dc.description.abstractIn this article, we consider the problem of sorting a linear/circular, multi-chromosomal genome by reversals, block-interchanges (i.e., generalized transpositions), and translocations (including fusions and fissions) where the used operations can be weighted differently, which aims to find a sequence of reversal, block-interchange, and translocation operations such that the sum of these operation weights in the sequence is minimum. It is known that this sorting problem can be solved in polynomial time on the basis of breakpoint graphs, when block-interchanges are weighted 2 (or >= 3) and the others are weighted 1. In this study, we design a novel and easily implemented algorithm for this problem by utilizing the permutation group theory in algebra.en_US
dc.language.isoen_USen_US
dc.subjectalgebraen_US
dc.subjectblock-interchangeen_US
dc.subjectfissionen_US
dc.subjectfusionen_US
dc.subjectgeneralized transpositionen_US
dc.subjectgenome rearrangementen_US
dc.subjectpermutation groupen_US
dc.subjectreversalen_US
dc.subjecttranslocationen_US
dc.titleSorting by Reversals, Generalized Transpositions, and Translocations Using Permutation Groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.1089/cmb.2009.0025en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL BIOLOGYen_US
dc.citation.volume17en_US
dc.citation.issue5en_US
dc.citation.spage685en_US
dc.citation.epage705en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000279272400003-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000279272400003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.