Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ku, Ching-Shun | en_US |
dc.contributor.author | Lee, Hsin-Yi | en_US |
dc.contributor.author | Huang, Jheng-Ming | en_US |
dc.contributor.author | Lin, Chih-Ming | en_US |
dc.date.accessioned | 2014-12-08T15:07:02Z | - |
dc.date.available | 2014-12-08T15:07:02Z | - |
dc.date.issued | 2010-04-15 | en_US |
dc.identifier.issn | 0254-0584 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.matchemphys.2009.12.028 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/5511 | - |
dc.description.abstract | Thin crystalline films of zinc oxide (ZnO) of high quality have been grown epitaxially on a (0 0 0 1) c-plane of a sapphire substrate with atomic layer deposition (ALD) at extra-low temperature. With diethylzinc (DEZn) and deionized water as precursors in combination with interrupted flow, we obtained ZnO thin films with an optimal growth window in a range 25-160 degrees C, so effectively lowering the growth temperature by about 120 degrees C relative to the conventional method involving a continuous-flow. We characterized the microstructure of these films with X-ray reflectivity and high-resolution X-ray diffraction (XRD) measurements. The XRD results indicate that the stock time might extend the reaction of DEZn and water through an increased duration. This low temperature for growth results in increased crystalline quality and reduced the non-radiative recombination process to enhance the optical properties of ZnO films. (c) 2009 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | ZnO | en_US |
dc.subject | Atomic layer deposition | en_US |
dc.subject | Flow-rate interruption | en_US |
dc.subject | X-ray diffraction | en_US |
dc.title | Epitaxial growth of ZnO films at extremely low temperature by atomic layer deposition with interrupted flow | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.matchemphys.2009.12.028 | en_US |
dc.identifier.journal | MATERIALS CHEMISTRY AND PHYSICS | en_US |
dc.citation.volume | 120 | en_US |
dc.citation.issue | 2-3 | en_US |
dc.citation.spage | 236 | en_US |
dc.citation.epage | 239 | en_US |
dc.contributor.department | 材料科學與工程學系 | zh_TW |
dc.contributor.department | Department of Materials Science and Engineering | en_US |
dc.identifier.wosnumber | WOS:000276984600002 | - |
dc.citation.woscount | 8 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.