Full metadata record
DC FieldValueLanguage
dc.contributor.author嚴翠英en_US
dc.contributor.authorTsui-Ying Yenen_US
dc.contributor.author洪志真en_US
dc.contributor.author洪慧念en_US
dc.contributor.authorJyh-Jen Horng Shiauen_US
dc.contributor.authorHui-Nien Hungen_US
dc.date.accessioned2014-12-12T02:08:34Z-
dc.date.available2014-12-12T02:08:34Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009126502en_US
dc.identifier.urihttp://hdl.handle.net/11536/55390-
dc.description.abstract生物晶片的實驗能在短暫的時間內提供我們數以千計的基因資料;此時,如何從中找出重要的基因成為大家關心的問題。在2003年,Lee et al. 提出一個層級性的貝氏模型來選取基因,他們採用潛在變數來建立迴歸模型,然後用混合的貝氏先驗分配來執行基因選取的動作,MCMC中的Gibbs sampling是他們模擬參數的方法。在此篇論文中,我們修正了他們在基因選取與作預測的演算法,並且,我們也成功的把它運用在俱有遺傳性的乳癌資料上面,主要是區別在BRCA1和BRCA2二種腫瘤上的突變基因。zh_TW
dc.description.abstractDNA micro-array experiments provide us thousands of genes data at once. How to identify the responsible genes is an important problem. Lee et al. (2003) propose a hierarchical Bayesian model for gene selection. They use latent variables to specialize the model as a regression setting, and then use a Bayesian mixture prior to perform the gene selection. The method they use to simulate parameters is Gibbs sampling, one kind of MCMC method. We modify their algorithm of gene selection and prediction in this paper. The method is applied successfully to hereditary breast cancer data to classify tumors with BRCA1 and BRCA2 mutations.en_US
dc.language.isoen_USen_US
dc.subject基因選取zh_TW
dc.subject預測zh_TW
dc.subjectgene selectionen_US
dc.subjectMCMCen_US
dc.subjectpredictionen_US
dc.title用MCMC的方法作基因選取與預測zh_TW
dc.titleGene Selection and Prediction by MCMC Methoden_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 650201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.