完整後設資料紀錄
DC 欄位語言
dc.contributor.author卓韋婷en_US
dc.contributor.authorWei-Ting Jwoen_US
dc.contributor.author陳鄰安en_US
dc.contributor.authorLin-An Chenen_US
dc.date.accessioned2014-12-12T02:08:38Z-
dc.date.available2014-12-12T02:08:38Z-
dc.date.issued2003en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009126509en_US
dc.identifier.urihttp://hdl.handle.net/11536/55457-
dc.description.abstract常用的分位數平均是第 及 這兩個分位數所取的平均數,此一平均數具有穩健性的特質。我們把此分位數平均擴展到由相同覆蓋機率但長度最短的兩個分位數來取的平均數,討論此一新的分位數平均,我們考慮了有母數及無母數兩種方法並做了分析,最後我們也把此一分位數平均擴展到一般的L-估計上。zh_TW
dc.description.abstractThe quantile mean being the average of a pair of symmetric type quantiles, and , is a robust type location parameter playing an alternative to the population mean. We extend this quantile mean to a pair of quantiles where this corresponding quantile interval is the one with smallest width among all choices of quantile intervals. Parametric statistical inferences and nonparametric estimation techniques are all addressed. Moreover, an extension of the quantile mean to new general L-estimation has also been provided.en_US
dc.language.isoen_USen_US
dc.subject分位數zh_TW
dc.subject統計推論zh_TW
dc.subjectQuantile Meanen_US
dc.subjectStatistical Inferenceen_US
dc.title分位數平均:統計推論與應用zh_TW
dc.titleQuantile Mean: Statistical Inferences and Applicationsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 650901.pdf
  2. 650902.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。