Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 陳獻庚 | en_US |
dc.contributor.author | CHEN,XIAN-GENG | en_US |
dc.contributor.author | 戈正銘 | en_US |
dc.contributor.author | GE,ZHENG-MING | en_US |
dc.date.accessioned | 2014-12-12T02:08:38Z | - |
dc.date.available | 2014-12-12T02:08:38Z | - |
dc.date.issued | 1990 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT792489020 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/55461 | - |
dc.description.abstract | 本篇論文由兩部分組成。在第一部分中首先以Liapunov直接法得出處於均勻力場之圓 軌道上的變轉衛星旋轉的無條件穩定與不穩定的充分條件,此結果嚴格地證明了Ri- mortt 所得的結論,同時也放寬了穩定條件。但實際上較精確的說,地球的重力場為 牛頓中心力場,因此也放寬了穩定條件。但實際上較精確的說,地球的重力場為牛頓 中心力場,因此也探討了處於牛頓中心力場之圓軌道上的雙轉衛星旋轉的運動穩定性 情況,並得出穩定和不穩定的充分條件。當以Liapunov直接法解決了上述的非線性自 治系統的運動穩定性後,接著以一次近似理論來分析此問題的不穩定性,並將結果和 前面所得做一詳細比較與分析。一開始討論此問題時假設軸子的角速度為常數,對於 一個真實的雙轉衛星,因為載體和軸子間有軸承摩擦力,使得軸子轉速變慢,現加一 反向力矩將之平衡,同時研究其穩定性,在第一部份最後,對雙轉衛星在線性阻尼作 用下的運動穩定性也加以研究並得出穩定的充分條件。 通常,穩定性問題都在平衡原點附近的半區域範圍里來研究,而不是在整個區域中。 在論文第二部份中,利用部分區域穩定理論得知處於均勻力場之Euler 陀螺在線線阻 尼力矩和馬達力矩作用下繞慣性主軸的長軸和短軸皆為穩定,同時亦得出處於牛頓中 心力場之Euler 陀螺在阻尼力矩和馬達力矩作用下的穩定條件。更進而探討雙轉衛星 同時受阻尼力矩和驅動力矩作用下的運動穩定的充分條件。 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 圓軌道 | zh_TW |
dc.subject | 雙轉衛星旋轉 | zh_TW |
dc.subject | 無條件穩定性 | zh_TW |
dc.subject | 重力場 | zh_TW |
dc.subject | 充傷條件 | zh_TW |
dc.subject | 牛頓中心力場 | zh_TW |
dc.subject | 穩定條件 | zh_TW |
dc.title | 在圓軌道上的雙轉衛星轉的無條件穩定性 | zh_TW |
dc.type | Thesis | en_US |
dc.contributor.department | 機械工程學系 | zh_TW |
Appears in Collections: | Thesis |