Full metadata record
DC FieldValueLanguage
dc.contributor.authorChao, Kun-Yuanen_US
dc.contributor.authorLin, Ja-Chenen_US
dc.date.accessioned2014-12-08T15:07:05Z-
dc.date.available2014-12-08T15:07:05Z-
dc.date.issued2010-04-01en_US
dc.identifier.issn0091-3286en_US
dc.identifier.urihttp://dx.doi.org/10.1117/1.3407067en_US
dc.identifier.urihttp://hdl.handle.net/11536/5555-
dc.description.abstractSecret image sharing is a popular technology to secure digital images in storage and transmission. Traditionally, the technology transforms one secret image into several images called shadows or shares. Later, when the number of collected shadows reaches a specified threshold value, the decomposed image can be reconstructed. We propose a new sharing approach to transform n secret images into n shadows. Later, after gathering all the n shadows, all the n secret images can be retrieved error-free. No information in any secret image is revealed if one shadow is absent. The total size of n generated shadows is identical to the total size of n input secret images; hence, this approach does not waste storage space. Each pixel in each secret image is reconstructed using only one Boolean, one modulus, and two mathematical operations, so it is also a fast approach for reconstructing many secret images. Comparisons are included. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3407067]en_US
dc.language.isoen_USen_US
dc.subjectmulti-image sharingen_US
dc.subjectmodulus operationen_US
dc.subjectBoolean operationen_US
dc.subjectinput/output size ratioen_US
dc.subjectcomputational complexityen_US
dc.titleSharing of multiple images: economically sized and fast-decoding approach based on modulus and Boolean operationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1117/1.3407067en_US
dc.identifier.journalOPTICAL ENGINEERINGen_US
dc.citation.volume49en_US
dc.citation.issue4en_US
dc.citation.epageen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000278512200035-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000278512200035.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.