Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | 李榮富 | en_US |
| dc.contributor.author | LI,RONG-FU | en_US |
| dc.contributor.author | 林松山 | en_US |
| dc.contributor.author | LIN,SONG-SHAN | en_US |
| dc.date.accessioned | 2014-12-12T02:08:45Z | - |
| dc.date.available | 2014-12-12T02:08:45Z | - |
| dc.date.issued | 1990 | en_US |
| dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT792507008 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/55562 | - |
| dc.description.abstract | 本論文主要討論Gel'fand方程式對稱正解的個數問題, 關於方程式。 Δu(x)+2δe =0. for x Ω , (0.1) u(x)=0,x Γ and (x)=0 x Γ , (0.2) (x)=0,x Γ and (X)=0, x Γ , (0.3) (x)=0,x Γ and u(x)+B (x)=0, x Γ , (0.4) Ω=Ω ={X=(x ,x ) :|X|=a},Γ ={x :|X|=1}, a (0,1) , δ>0, B是非正常數, 本論文證明, 對(0.1),(0.2 )證明可找到δ(a)>0時 , 當δ (0,δ(a)) 時至少有兩個對稱正解, 當δ=δ(a )時至少有一個對稱 正解, 當δ>δ(a )時沒有對稱正解。 對(0.1),(0.3) 而且a (0,e )時, 證明可找到δ (a) >0,使得當δ (0, δ(a ))時, 剛好兩個對稱正解, 當δ=δ (a )時剛好一個對稱正解, 當δ> δ (a )時沒有對稱正解。 對(0.1 ),(0.4), 而且B=B(a ) (log a, oめ, 證明可找到δ (a)>0使 得當δ (0,δ (a ))時, 至少有兩個對稱正解, δ=δ (a )時, 至少有一 個對稱正解, δ>δ (a) 時, 沒有對稱正解, 更進一步, 若則對所有的B (-x,l- og aめ至少有一個對稱正解。 | zh_TW |
| dc.language.iso | zh_TW | en_US |
| dc.subject | 環上 | zh_TW |
| dc.subject | 一般形邊界條件 | zh_TW |
| dc.subject | Gel'fand方程式 | zh_TW |
| dc.subject | 對稱正解 | zh_TW |
| dc.title | 在環上一般型邊界條件的Gel'fand方程式 | zh_TW |
| dc.type | Thesis | en_US |
| dc.contributor.department | 應用數學系所 | zh_TW |
| Appears in Collections: | Thesis | |

