Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hsu, Shang H. | en_US |
dc.contributor.author | Wen, Ming-Hui | en_US |
dc.contributor.author | Lin, Hsin-Chieh | en_US |
dc.contributor.author | Lee, Chun-Chia | en_US |
dc.contributor.author | Lee, Chia-Hoang | en_US |
dc.date.accessioned | 2014-12-08T15:07:07Z | - |
dc.date.available | 2014-12-08T15:07:07Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.isbn | 978-3-540-72558-9 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/5580 | - |
dc.description.abstract | Previous personalized DTV recommendation systems focus only on viewers' historical viewing records or demographic data. This study proposes a new recommending mechanism from a user oriented perspective. The recommending mechanism is based on user properties such as Activities, Interests, Moods, Experiences, and Demographic information-AIMED. The AIMED data is fed into a neural network model to predict TV viewers' program preferences. Evaluation results indicate that the AIMED model significantly increases recommendation accuracy and decreases prediction errors compared to the conventional model. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | TV program recommendation system | en_US |
dc.subject | predictor | en_US |
dc.subject | personal information | en_US |
dc.subject | lifestyle | en_US |
dc.subject | activity | en_US |
dc.subject | interest | en_US |
dc.subject | mood | en_US |
dc.title | AIMED - A personalized TV recommendation system | en_US |
dc.type | Article | en_US |
dc.identifier.journal | INTERACTIVE TV: A SHARED EXPERIENCE, PROCEEDING | en_US |
dc.citation.volume | 4471 | en_US |
dc.citation.spage | 166 | en_US |
dc.citation.epage | 174 | en_US |
dc.contributor.department | 工業工程與管理學系 | zh_TW |
dc.contributor.department | Department of Industrial Engineering and Management | en_US |
dc.identifier.wosnumber | WOS:000246687700018 | - |
Appears in Collections: | Conferences Paper |