Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Shang H.en_US
dc.contributor.authorWen, Ming-Huien_US
dc.contributor.authorLin, Hsin-Chiehen_US
dc.contributor.authorLee, Chun-Chiaen_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.date.accessioned2014-12-08T15:07:07Z-
dc.date.available2014-12-08T15:07:07Z-
dc.date.issued2007en_US
dc.identifier.isbn978-3-540-72558-9en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/5580-
dc.description.abstractPrevious personalized DTV recommendation systems focus only on viewers' historical viewing records or demographic data. This study proposes a new recommending mechanism from a user oriented perspective. The recommending mechanism is based on user properties such as Activities, Interests, Moods, Experiences, and Demographic information-AIMED. The AIMED data is fed into a neural network model to predict TV viewers' program preferences. Evaluation results indicate that the AIMED model significantly increases recommendation accuracy and decreases prediction errors compared to the conventional model.en_US
dc.language.isoen_USen_US
dc.subjectTV program recommendation systemen_US
dc.subjectpredictoren_US
dc.subjectpersonal informationen_US
dc.subjectlifestyleen_US
dc.subjectactivityen_US
dc.subjectinteresten_US
dc.subjectmooden_US
dc.titleAIMED - A personalized TV recommendation systemen_US
dc.typeArticleen_US
dc.identifier.journalINTERACTIVE TV: A SHARED EXPERIENCE, PROCEEDINGen_US
dc.citation.volume4471en_US
dc.citation.spage166en_US
dc.citation.epage174en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000246687700018-
Appears in Collections:Conferences Paper