Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 鄭平寶 | en_US |
dc.contributor.author | ZHENG, PING-BAO | en_US |
dc.contributor.author | 李福進 | en_US |
dc.contributor.author | 吳文榕 | en_US |
dc.contributor.author | LI, FU-JIN | en_US |
dc.contributor.author | WU, WEN-RONG | en_US |
dc.date.accessioned | 2014-12-12T02:09:08Z | - |
dc.date.available | 2014-12-12T02:09:08Z | - |
dc.date.issued | 1991 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT802327025 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/55812 | - |
dc.description.abstract | 一般在解決追蹤問題上最常使用的是卡門濾波器(Kalman Filter) ,它是在量測雜訊 是高斯分佈的假設下之最佳解,大部份這方面研究也均假設量測雜訊是高斯分佈,然 而這假設不一定成立,量測雜訊可能不是高斯分佈。在雷達系統中即有一種叫做 glint 的雜訊其分佈為非高斯,且具有長尾形狀,這種雜訊會嚴重地影響到追蹤之準 確度。一般追蹤閃躲(Maneuver)的目標常用之演算法有IMM(Interacting Multiple Model)及IE(Input Estimation),而它們的量測雜訊也均假設是高斯。非高斯量測雜 訊不但會使得卡門濾波器之效率大為降低,而且會使IMM 演算法無法正確判斷各模式 之發生機率,也會使IE演算法無法正確的估測目標物的加速度。本論文即針對此問題 提出改善之辦法,對於IMM 演算法,我們使用一能濾除非高斯雜訊之非線性濾波器以 代替卡門濾波器,並修正各模式之機率分佈。而對於IE演算法,我們則使用次序統計 濾波器(Order Statistics Filter) 做前處理以先濾除非高斯之雜訊。實驗結果顯示 我們所提出之方法,在glint 雜訊之環境中能有效的提高追蹤之準確度。 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 量測雜訊 | zh_TW |
dc.subject | 非線性 | zh_TW |
dc.title | 穩健追蹤演算法 | zh_TW |
dc.title | Robust tracking algorithms | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
Appears in Collections: | Thesis |