完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Fukuhara, Shinji | en_US |
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2014-12-08T15:07:09Z | - |
dc.date.available | 2014-12-08T15:07:09Z | - |
dc.date.issued | 2010-04-01 | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jnt.2009.09.009 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/5618 | - |
dc.description.abstract | Let f(1),..., f(d) be an orthogonal basis for the space of cusp forms of even weight 2k on Gamma(0)(N). Let (f(i), s) and L(f(i), chi, s) denote the L-function of f(i) and its twist by a Dirichlet character chi, respectively. In this note, we obtain a "trace formula" for the values L(f(i), chi, m)<(L(f(i), n))over bar> at integers m and n with 0 < m, n < 2k and proper parity. In the case N = 1 or N = 2, the formula gives us a convenient way to evaluate precisely the value of the ratio L(f, chi, m)/L(f, n) for a Hecke eigenform f. (C) 2009 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hecke operators | en_US |
dc.subject | L-values | en_US |
dc.subject | Modular forms (one variable) | en_US |
dc.subject | Period polynomials | en_US |
dc.title | Twisted Hecke L-values and period polynomials | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jnt.2009.09.009 | en_US |
dc.identifier.journal | JOURNAL OF NUMBER THEORY | en_US |
dc.citation.volume | 130 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 976 | en_US |
dc.citation.epage | 999 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000275720400013 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |