完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFukuhara, Shinjien_US
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:07:09Z-
dc.date.available2014-12-08T15:07:09Z-
dc.date.issued2010-04-01en_US
dc.identifier.issn0022-314Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jnt.2009.09.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/5618-
dc.description.abstractLet f(1),..., f(d) be an orthogonal basis for the space of cusp forms of even weight 2k on Gamma(0)(N). Let (f(i), s) and L(f(i), chi, s) denote the L-function of f(i) and its twist by a Dirichlet character chi, respectively. In this note, we obtain a "trace formula" for the values L(f(i), chi, m)<(L(f(i), n))over bar> at integers m and n with 0 < m, n < 2k and proper parity. In the case N = 1 or N = 2, the formula gives us a convenient way to evaluate precisely the value of the ratio L(f, chi, m)/L(f, n) for a Hecke eigenform f. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHecke operatorsen_US
dc.subjectL-valuesen_US
dc.subjectModular forms (one variable)en_US
dc.subjectPeriod polynomialsen_US
dc.titleTwisted Hecke L-values and period polynomialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jnt.2009.09.009en_US
dc.identifier.journalJOURNAL OF NUMBER THEORYen_US
dc.citation.volume130en_US
dc.citation.issue4en_US
dc.citation.spage976en_US
dc.citation.epage999en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000275720400013-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000275720400013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。