Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerng, WRen_US
dc.contributor.authorLin, WWen_US
dc.contributor.authorWang, CSen_US
dc.date.accessioned2014-12-08T15:01:48Z-
dc.date.available2014-12-08T15:01:48Z-
dc.date.issued1997-05-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://hdl.handle.net/11536/561-
dc.description.abstractThe goal of solving an algebraic Riccati equation is to find the stable invariant subspace corresponding to all the eigenvalues lying in the open left-half plane. The purpose of this paper is to propose a structure-preserving Lanczos-type algorithm incorporated with shift and invert techniques, named shift-inverted J-Lanczos algorithm, for computing the stable invariant subspace for large sparse Hamiltonian matrices. The algorithm is based on the J-tridiagonalization procedure of a Hamiltonian matrix using symplectic similarity transformations. We give a detailed analysis on the convergence behavior of the J-Lanczos algorithm and present error bound analysis and Paige-type theorem. Numerical results for the proposed algorithm applied to a practical example arising from the position and velocity control for a string of high-speed vehicles are reported.en_US
dc.language.isoen_USen_US
dc.subjectRiccati equationen_US
dc.subjectHamiltonian matrixen_US
dc.subjectJ-Lanczos algorithmen_US
dc.subjectJ-tridiagonalizationen_US
dc.subjectsympletic matrixen_US
dc.subjectSR factorizationen_US
dc.titleThe shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equationsen_US
dc.typeArticleen_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume33en_US
dc.citation.issue10en_US
dc.citation.spage23en_US
dc.citation.epage40en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1997XJ00100003-
dc.citation.woscount13-
Appears in Collections:Articles


Files in This Item:

  1. A1997XJ00100003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.